Advanced metering infrastructure system and massive data simulation, based on the smart grid concept.

Authors

Keywords:

Advanced metering infrastructure, power factor correction, data simulation.

Abstract

An advanced metering infrastructure (AMI) system has been designed to measure electrical parameters and transmit them to a database (DB) on the smart grid (SG) concept. The present system allows remote monitoring of electrical parameters for a single-phase residential service, able to automatically correct the power factor (PF) and upload information to a DB. The system’s performance has been tested by calculating non-homogeneous parameters of ten thousand residential users to simulate its massive operation. The geographical coverage of more than two thousand users clustered as a private wireless network can be ensured in line-of-sight. It has been estimated the reduction of average current consumption around 29%. Collected data in the DB can be used for modeling and optimization purposes in electricity generation and distribution according to demand-side management techniques.

Downloads

Download data is not yet available.

Author Biographies

MTIC. Rojas-Cortés, Polytechnic University of Pachuca

Adriana Lizeth Rojas-Cortés. She is student at the Master’s program in Information and Communication Technologies at the Polytechnic University of Pachuca, Mexico.  Her research interests are systems design, big data, internet of things, smart cities, applications development of embedded systems and data analysis.

Dr. Trejo-Macotela, Polytechnic University of Pachuca

Francisco Rafael Trejo-Macotela received the PhD. Degree in Electronics from the National Institute of Astrophysics, Optics and Electronics, Puebla, Mexico. Currently he is professor in the Master's in Mechatronics and Master's in ICT programs at the Polytechnic University of Pachuca, Mexico. His main research interests are Integrated Circuit Design, Analog and Digital Design, Embedded Systems, RF Electronics, Telecommunications Systems, Precision Agriculture, Internet of Things, among others.

Dr. Ramos-Fernández, Polytechnic University of Pachuca

Julio César Ramos-Fernández. was born on april 26th, 1967 in Pachuca city, Hidalgo Sate, Mexico. His studies are Double Degree (DD) of Philosophy (PhD) in the field of Computational Sciences in Mexico and PhD Engineering and Applied Science in France by an International agreement between France-Mexico ECOS-NORD/ANUIES-SEP-CONACYT, in 2008.  He Is a professor at Polytechnic University of Pachuca (PUP) in the graduate department in mechatronics, since 2008, and is the technical head of the National Laboratory in Autonomous Vehicles and Exoskeletons of the PUP campus by the National Council of Humanities, Science and Technology of Mexico (CONHACYT). His research interests lie in mechatronics systems, fuzzy logic modelling and control, applied to complex problems as modelling and control of microclimate in greenhouses and precision agriculture.

Dr. Simancas-Acevedo, Polytechnic University of Pachuca

Eric Simancas-Acevedo (Phd. in Electro-communications), graduated in 2015 from the National Polytechnic Institute (IPN-Mexico); he had a postgraduate stay study in Tokyo, Japan 2001-2003; He is currently a Senior Research Professor at the Polytechnic University of Pachuca in Engineering and Graduate department. His research interests include the signal and image processing, artificial intelligence, adaptive filters, neural networks, fuzzy logic, stochastic models, embedded systems, security and control systems based on biometric features and embedded systems.

Dr. Robles-Camarillo, Universidad Politécnica de Pachuca

Daniel Robles-Camarillo. He obtained his PhD. in Communications and Electronics from the National Polytechnic Institute (IPN-Mexico) in 2011. His research interests include the applications of embedded systems, electronic instrumentation and communication, wireless sensor networks, and cyberphysical systems, complemented by machine learning algorithms. Currently he is professor at the master’s program in Information and Communication Technologies and the PhD program in Advanced Sciences and Technologies at the Polytechnic University of Pachuca (Mexico).

References

M. H. Maruf, M. A. ul Haq, S. K. Dey, A. Al Mansur, y A. S. M. Shihavuddin, “Adaptation for sustainable implementation of Smart Grid in developing countries like Bangladesh”, Energy Rep., vol. 6, pp. 2520–2530, nov. 2020, doi: 10.1016/j.egyr.2020.09.010.

A. K. Dsouza, A. Thammaiah, y L. K. M. Venkatesh, “An intelligent management of power flow in the smart grid system using hybrid NPO-ATLA approach”, Artif. Intell. Rev., vol. 55, núm. 8, pp. 6461–6503, dic. 2022, doi: 10.1007/s10462-022-10158-9.

E. Kabalcı, Y. Kabalcı, y P. Siano, “Design and implementation of a smart metering infrastructure for low voltage microgrids”, Int. J. Electr. Power Energy Syst., vol. 134, p. 107375, ene. 2022, doi: 10.1016/j.ijepes.2021.107375.

S. Yilmaz, A. Rinaldi, y M. K. Patel, “DSM interactions: What is the impact of appliance energy efficiency measures on the demand response (peak load management)?”, Energy Policy, vol. 139, p. 111323, abr. 2020, doi: 10.1016/j.enpol.2020.111323.

James Momoh, Smart Grid. Fundamentals of Design and Analysis, 1a ed. United States of America: Institute of Electrical and Electronics Engineers, 2012.

O. Abrishambaf, P. Faria, y Z. Vale, “Ramping of Demand Response Event with Deploying Distinct Programs by an Aggregator”, Energies, vol. 13, núm. 6, Art. núm. 6, ene. 2020, doi: 10.3390/en13061389.

T. Zhang, X. Ji, y W. Xu, “Jamming-Resilient Backup Nodes Selection for RPL-based Routing in Smart Grid AMI Networks”, Mob. Netw. Appl., vol. 27, núm. 1, pp. 329–342, feb. 2022, doi: 10.1007/s11036-020-01634-z.

Z. Xu, Y. Gao, M. Hussain, y P. Cheng, “Demand Side Management for Smart Grid Based on Smart Home Appliances with Renewable Energy Sources and an Energy Storage System”, Math. Probl. Eng., vol. 2020, p. e9545439, abr. 2020, doi: 10.1155/2020/9545439.

M. U. Saleem, M. R. Usman, M. A. Usman, y C. Politis, “Design, Deployment and Performance Evaluation of an IoT Based Smart Energy Management System for Demand Side Management in Smart Grid”, IEEE Access, vol. 10, pp. 15261–15278, 2022, doi: 10.1109/ACCESS.2022.3147484.

S. de Energía, “Programa para el Desarrollo del Sistema Eléctrico Nacional 2022-2036”, gob.mx, el 31 de mayo de 2022. http://www.gob.mx/sener/articulos/programa-para-el-desarrollo-del-sistemaelectrico-nacional-304042 (consultado el 14 de agosto de 2022).

“Portal CFE-Información al cliente”, Información al cliente - Conoce tu recibo. https://www.cfe.mx/hogar/infcliente/pages/conoceturecibo.aspx (Accessed 11 January 2023).

Comisión Federal de Electricidad, “Plan de Negocios 2023-2027 Pública”. diciembre de 2022. [Available online]: https://www.cfe.mx/finanzas/Documents/Plan_Negocios_2023-2027.pdf

H. P. Devarapalli, V. S. S. S. S. Dhanikonda, y S. B. Gunturi, “Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion”, Energies, vol. 13, núm. 18, Art. núm. 18, ene. 2020, doi: 10.3390/en13184628.

I. González, A. J. Calderón, y F. J. Folgado, “IoT real time system for monitoring lithium-ion battery long-term operation in microgrids”, J. Energy Storage, vol. 51, p. 104596, jul. 2022, doi: 10.1016/j.est.2022.104596.

K. T., C. R. S., J. D. N. J., y C. K., “Design of IoT based smart compact energy meter for monitoring and controlling the usage of energy and power quality issues with demand side management for a commercial building”, Sustain. Energy Grids Netw., vol. 26, p. 100454, jun. 2021, doi: 10.1016/j.segan.2021.100454.

S. A. Hashmi, C. F. Ali, y S. Zafar, “Internet of things and cloud computing-based energy management system for demand side management in smart grid”, Int. J. Energy Res., vol. 45, núm. 1, pp. 1007–1022, 2021, doi: 10.1002/er.6141.

M. Forcan, M. Maksimović, J. Forcan, y S. Jokić, “5G and Cloudification to Enhance Real-Time Electricity Consumption Measuring in Smart Grid”, en 2020 28th Telecommunications Forum (℡FOR), nov. 2020, pp. 1–4. doi: 10.1109/℡FOR51502.2020.9306518.

Y. Song, P.-Y. Kong, Y. Kim, S. Baek, y Y. Choi, “Cellular-Assisted D2D Communications for Advanced Metering Infrastructure in Smart Gird”, IEEE Syst. J., vol. 13, núm. 2, pp. 1347–1358, jun. 2019,

doi: 10.1109/JSYST.2019.2891719.

R. Arrieta-Pérez, C. Fragoso-Cruz, A. Meneses-Figueroa, y D. Robles-Camarillo, “Sistema electrónico para monitoreo de la demanda y corrección del factor de potencia para servicio eléctrico residencial”, núm. 9, p. 8, 2021.

U. Nations, “Objetivo 13—La adopción de medidas urgentes para combatir el cambio climático – los ODS y el acuerdo de París sobre el clima | Naciones Unidas”, United Nations, 2016.

https://www.un.org/es/chronicle/article/objetivo-13-la-adopcion-de-medidasurgentes-para-combatir-el-cambio-climatico-los-ods-y-el-acuerdo (Accessed 20 november 2022).

U. Nations, “Objetivo 7—Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos | Naciones Unidas”, United Nations, el 25 de septiembre de 2015. https://www.un.org/es/chronicle/article/objetivo-7-garantizar-el-acceso-una-energia-asequible-fiable-sostenible-y-moderna-paratodos (Accessed 2 august 2022).

C. K. Alexander y M. N. O. Sadiku, Fundamentos de Circuitos Eléctricos, 5a ed. México, D.F.: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. de C.V., 2006.

T. L. Floyd, Principios de Circuitos Eléctricos, 8va. Naucalpan de Juárez, Edo. de México: Pearson Educación de México, S.A. de C.V., 2007.

D. Robles-Camarillo, “Solicitud de Patente ‘Sistema inteligente de monitoreo de parámetros eléctricos para acometida monofásica con corrección del factor de potencia”. 2022.

“Module User Guide - Router/Coordinator configuration Xbee-PRO”. https://www.digi.com/resources/documentation/digidocs/90002002/default.ht

m#Containers/cont_xbee_pro_zigbee_router_coord_config.htm?TocPath=Ma

nage%2520End%2520Devices%257CRouter%252FCoordinator%2520config

uration%257C_____0 (Accessed 23 February 2023).

“Primeros pasos con Cloud Firestore”, Firebase. https://firebase.google.com/docs/firestore/quickstart?hl=es-419 (Accessed 14 august 2022).

R. Buyya, C. Vecchiola, y S. T. Selvi, Mastering cloud computing: foundations and applications programming. Ámsterdam ; Boston: Morgan Kaufmann, 2013.

“Django”, Django Project. https://www.djangoproject.com/ (Accessed 2 may 2023).

E. Lee, J. Kim, y D. Jang, “Load Profile Segmentation for Effective Residential Demand Response Program: Method and Evidence from Korean Pilot Study”, Energies, vol. 13, núm. 6, Art. núm. 6, ene. 2020, doi: 10.3390/en13061348.

DOF - Diario Oficial de la Federación, “PROYECTO de Norma Oficial Mexicana PROY-NOM-001-SEDE-2018, Instalaciones Eléctricas 9 ID 8215

(utilización)”, el 6 de agosto de 2018. https://dof.gob.mx/nota_detalle.php?codigo=5533986&fecha=06/08/2018 (Accessed 29 november 2022).

D. C. Montgomery, Diseño y análisis de experimentos, 2a ed. México, D.F.: Limusa Wiley, 2004.

INEGI, “Espacio y datos de México”, Accessed 20 January 2023, [Available online:] https://www.inegi.org.mx/app/mapa/espacioydatos/

Market Data Mexico, “Perfil sociodemográfico: Colonia San Cayetano, Pachuca de Soto, en Hidalgo”, Accessed 20 January 2023, [Available online:] https://www.marketdatamexico.com/es/article/Perfil-sociodemografico-

Colonia-San-Cayetano-Pachuca-Soto-Hidalgo

C. Gavilanez, M. Jaramillo, W. Pavón, C. Barrera-Singaña, and M. Ruíz, “Power Factor Improvement in a Distribution System by Implementing Adaptive Control for Reactive Power Filters,” in 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT), 2022,

pp. 1–6, doi: 10.1109/GlobConPT57482.2022.9938312.

M. Callacando, W. Pavón, and L. Ortíz, “Multilevel inverter DSTATCOM for reducing total harmonic distortion in a non-linear loads electrical distribution system,” Rev. Técnica "energía", vol. 19, no. 1 SE-EFICIENCIA ENERGÉTICA, p. PP. 85-91, Jul. 2022, doi: 10.37116/revistaenergia.v19.n1.2022.520.

Published

2023-09-27

How to Cite

Rojas-Cortés, A. L., Trejo-Macotela, F. R., Ramos-Fernández, J. C. ., Simancas-Acevedo, E., & Robles Camarillo, D. (2023). Advanced metering infrastructure system and massive data simulation, based on the smart grid concept. IEEE Latin America Transactions, 21(11), 1199–1208. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/8215

Issue

Section

Electric Energy

Most read articles by the same author(s)