Telemonitoring Device of Blood Pressure and Heart Rate Through Multilayer Perceptrons and Pulse Rate Variability

Authors

  • Juan Quintanar-Gómez Universidad Polit´ecnica de Pachuca
  • Daniel Robles-Camarillo Universidad Polit´ecnica de Pachuca https://orcid.org/0000-0002-7637-5904
  • Francisco Rafael Trejo-Macotela Universidad Polit´ecnica de Pachuca https://orcid.org/0000-0003-2133-3456
  • Israel Campero-Jurado Universidad Polit´ecnica de Pachuca

Keywords:

Telemonitoring, LPWAN, Blood Pressure, Sphygmomanometer, Neural Network

Abstract

This paper presents the development of an electronic prototype for estimating systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) by using the features extracted from the oscillometric signal obtained by the device. Firstly, HR was determined through the peaks provided by the oscillometric signal in a period of thirty seconds, providing an estimated value of beats per minute (bpm). Second, the blood pressure (BP) indexes were acquired using a multi-layer perceptron (MLP) and the combination of the Maximum Amplitude Algorithm (MAA), which detects the Mean Arterial Pressure (MAP). The estimated heart rate and the MAP were added to the MLP input to determine the diastolic and sistolic blood pressure. The parameters obtained were transmitted by a LPWAN module to a cloud database, visualizing the information via web server. The parameters obtained during the test phase were compared against Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) provided by the literature, identifying a better response of DBP determination. The proposed prototype could be an auxiliary tool for the estimation of blood pressure and heart rate in a period less than 60 seconds for patients in ambulatory conditions helping the medical staff to obtain clinical information of patients during their daily activities.

Downloads

Download data is not yet available.

Author Biographies

Juan Quintanar-Gómez, Universidad Polit´ecnica de Pachuca

Juan Quintanar-G´omez es un estudiante de maestr´ıa en Tecnolog´ıas de la Informaci´on y Comunicaciones en la Universidad Polit´ecnica de Pachuca. Sus intereses de investigaci´on incluyen el desarrollo de Sistemas Embebidos, Inteligencia Artificial, Internet de las Cosas y An´alisis estad´ıstico.

Daniel Robles-Camarillo, Universidad Polit´ecnica de Pachuca

Daniel Robles-Camarillo estudi´o una Maestr´ıa en Ciencias en Ingenier´ıa Microelectr´onica en el ESIME Culhuac´an del Instituto Polit´ecnico Nacional. Obtuvo un doctorado en comunicaciones y electr´onica en la misma instituci´on. Actualmente es profesor investigador en la Universidad Polit´ecnica de Pachuca. Sus intereses cient´ıficos son la Electr´onica, los Microcontroladores, Biose˜nales, Procesamiento de im´agenes e Inteligencia Artificial.

Francisco Rafael Trejo-Macotela, Universidad Polit´ecnica de Pachuca

Francisco Rafael Trejo-Macotela es Doctor en Ciencias con especialidad en Electr´onica, graduado del Instituto Nacional de Electro´nica, O´ ptica y Electr´onica, Puebla, M´exico. Fue asignado como profesor en la Universidad Polit´ecnica de Pachuca. Sus principales intereses de investigaci´on son el Dise˜no de Circuitos Integrados, Dise˜no Anal´ogico y Digital, Electr´onica de RF, Telecomunicaciones, Internet de las Cosas, entre otros.

Israel Campero-Jurado, Universidad Polit´ecnica de Pachuca

Israel Campero-Jurado es un estudiante de maestr´ıa en Tecnolog´ıas de la Informaci´on y Comunicaciones en la Universidad Polit´ecnica de Pachuca. Sus intereses cient´ıficos y tecnol´ogicos son el modelado de Sistemas biol´ogicos, An´alisis estad´ıstico y L´ogica difusa.

References

S. de Integraci ́on, “Informe sobre la salud de los mexicanos 2016,”Diagnostico general de la salud poblacional. M ́exico: Secretar ıa deSalud, 2015.

T. Unger, C. Borghi, F. Charchar, N. A. Khan, N. R. Poulter, D. Prabhakaran, A. Ramirez, M. Schlaich, G. S. Stergiou, M. Tomaszewskiet al.,“2020 international society of hypertension global hypertension practiceguidelines,”Hypertension, pp. HYPERTENSIONAHA–120, 2020.

R. Singh, “Hypertensive disorders in pregnancy,”Clinical Queries:Nephrology, vol. 2, no. 2, pp. 47–55, 2013

.[4] S. Makino, J. Takeda, S. Takeda, K. Watanabe, K. Matsubara,O. Nakamoto, J. Ushijima, A. Ohkuchi, K. Koide, K. Mimuraet al.,“New definition and classification of “hypertensive disorders of pregnancy(hdp),”Hypertension Research in Pregnancy, vol. 7, no. 1, pp. 1–5, 2019.

A. Baschat, “First-trimester screening for pre-eclampsia: moving frompersonalized risk prediction to prevention,”Ultrasound in Obstetrics &Gynecology, vol. 45, no. 2, pp. 119–129, 2015.

C. de Unidades M ́edicas de Alta Especialidad, “Detecci ́on, diagnostico y tratamiento de las enfermedades hipertensivas durante el embarazo,”Instituto Mexicano del Seguro Social, 2017.

A. F. Rubio-Guerra, “New guides of american college of cardiol-ogy/american heart association hypertension for the treatment of highblood pressure. a jump in the right direction?”Medicina Interna deM ́exico, vol. 34, no. 2, pp. 299–303, 2018.

S. Butalia, F. Audibert, A.-M. Cˆot ́e, T. Firoz, A. G. Logan, L. A. Magee,W. Mundle, E. Rey, D. M. Rabi, S. S. Daskalopoulouet al., “Hyper-tension canada’s 2018 guidelines for the management of hypertension inpregnancy,”Canadian Journal of Cardiology, vol. 34, no. 5, pp. 526–531,2018

.[9] A. Baschat, “First-trimester screening for pre-eclampsia: moving frompersonalized risk prediction to prevention,”Ultrasound in Obstetrics &Gynecology, vol. 45, no. 2, pp. 119–129, 2015.

R. M. Carey and P. K. Whelton, “Prevention, detection, evaluation, and management of high blood pressure in adults: synopsis of the 2017american college of cardiology/american heart association hypertension guideline,”Annals of internal medicine, vol. 168, no. 5, pp. 351–358,2018.

G. S. Stergiou, G. Parati, Y. Imai, R. J. McManus, G. A. Head, K. Kario,P. Muntner, M. G. Myers, J. Sharman, E. O’Brienet al., “Guidelines for home blood pressure monitoring,” inHome Blood Pressure Monitoring.Springer, 2020, pp. 165–170.

A. Khalil, H. Perry, D. Lanssens, and W. Gyselaers, “Telemonitoring for hypertensive disease in pregnancy,” Expert review of medical devices,vol. 16, no. 8, pp. 653–661, 2019

.[13] M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic, S. Rajan, andI. Batkin, “Oscillometric blood pressure estimation: past, present, andfuture,”IEEE reviews in biomedical engineering, vol. 8, pp. 44–63, 2015.

G. Ogedegbe and T. Pickering, “Principles and techniques of blood pressure measurement,”Cardiology clinics, vol. 28, no. 4, pp. 571–586,2010.

A. Chandraskehar, M. Yavarimanesh, J.-O. Hahn, S.-H. Sung, C.-H.Chen, H.-M. Cheng, and R. Mukkamala, “Formulas to explain popularoscillometric blood pressure estimation algorithms,”Frontiers in Physi-ology, vol. 10, p. 1415, 2019.

M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic, and S. Rajan, “Os-cillometric blood pressure estimation using principal component analysisand neural networks,” in2009 IEEE Toronto International ConferenceScience and Technology for Humanity (TIC-STH).IEEE, 2009, pp.981–986.

A. A. Anisimov, A. I. Skorobogatova, and A. D. Sutyagina, “Implemen-tation of neural networks for blood pressure measurement,” in2018 IEEEConference of Russian Young Researchers in Electrical and ElectronicEngineering (EIConRus). IEEE, 2018, pp. 1190–1194.

A. Skorobogatova, A. Sutyagina, and A. Anisimov, “Improving thedesign of arterial blood pressure monitor,” in2017 20th Conference ofOpen Innovations Association (FRUCT). IEEE, 2017, pp. 406–412.

A. B ́anhalmi, J. Borb ́as, M. Fidrich, V. Bilicki, Z. Gingl, and L. Rudas,“Analysis of a pulse rate variability measurement using a smartphonecamera,”Journal of healthcare engineering, vol. 2018, 2018.

A. Sch ̈afer and J. Vagedes, “How accurate is pulse rate variability as anestimate of heart rate variability?: A review on studies comparing pho-toplethysmographic technology with an electrocardiogram,”Internationaljournal of cardiology, vol. 166, no. 1, pp. 15–29, 2013.

G. Leikan, E. Rossi, M. Sanz, D. D. Rodr ́ıguez, M. M ́antaras, J. Nicolet,D. Zapata, I. Lapyckyj, L. N. Siri, and M. Perrone, “Evaluation ofagreement between temporal series obtained from electrocardiogram andpulse wave,” inJournal of Physics: Conference Series, vol. 705, 2016, p.012038.

S. Ahmad, M. Bolic, H. Dajani, and V. Groza, “Wavelet estimation ofpulse rate variability from oscillometric blood pressure measurements,”in2009 IEEE International Workshop on Medical Measurements andApplications. IEEE, 2009, pp. 37–40.

U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri,“Heart rate variability: a review,”Medical and biological engineering andcomputing, vol. 44, no. 12, pp. 1031–1051, 2006.

S. Ahmad, M. Bolic, H. Dajani, V. Groza, I. Batkin, and S. Rajan,“Measurement of heart rate variability using an oscillometric blood pres-sure monitor,”IEEE transactions on instrumentation and measurement,vol. 59, no. 10, pp. 2575–2590, 2010.

J. Hart, “Association between heart rate variability and manual pulserate,”The Journal of the Canadian Chiropractic Association, vol. 57,no. 3, p. 243, 2013.

B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, andK. Mankodiya, “Towards fog-driven iot ehealth: Promises and challengesof iot in medicine and healthcare,”Future Generation Computer Systems,vol. 78, pp. 659–676, 2018.

B. Farahani, F. Firouzi, and K. Chakrabarty, “Healthcare iot,” inIntel-ligent Internet of Things. Springer, 2020, pp. 515–545.

J. Miranda, J. Cabral, S. Wagner, C. Fischer Pedersen, B. Ravelo,M. Memon, and M. Mathiesen, “An open platform for seamless sensorsupport in healthcare for the internet of things,”Sensors, vol. 16, no. 12,p. 2089, 2016, documento 41.

K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of cellular pwan technologies for iot deployment: Sigfox, lorawan, and nb-iot,”in2018 IEEE International Conference on Pervasive Computing andCommunications Workshops (PerCom Workshops). IEEE, 2018, pp. 197–202.

B. S. Chaudhari and M. Zennaro, “Introduction to low-power wide-area networks,” inLPWAN Technologies for IoT and M2M Applications.Elsevier, 2020, pp. 1–13

J. A. M. Shimek, J. Emmanuel, P. Orris, Y. Chartier, W. H. Organizationet al., “Reemplazo de los term ́ometros y de los tensiometros de mercurio en la atenci ́on de salud: Gu ́ıa t ́ecnica,” 2011.

P. D. P. Adi and A. Kitagawa, “Zigbee radio frequency (rf) performance on raspberry pi 3 for internet of things (iot) based blood pressure sensorsmonitoring,”International Journal of Advanced Computer Science andApplications (IJACSA), vol. 10, no. 5, 2019.

S. Sigfox, “Sigfox technical overview,” 2017.

K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study oflpwan technologies for large-scale iot deployment,”ICT express, vol. 5,no. 1, pp. 1–7, 2019.

J. M. Wooldridge,Introductory econometrics: A modern approach.Nelson Education, 2016.

S. W. Smithet al., “The scientist and engineer’s guide to digital signalprocessing,” 1997.

G. Gelao, R. Marani, V. Passaro, and A. G. Perri, “Oscillometric con-tinuous blood pressure sensing for wearable health monitoring system,”arXiv preprint arXiv:1501.02958, 2015.

W. Jung,Op Amp applications handbook. Newnes, 2005.

A. G ́eron,Hands-On Machine Learning with Scikit-Learn, Keras, andTensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.O’Reilly Media, 2019.

E. Sidhu, M. Yoshida, V. Z. Groza, H. R. Dajani, and M. Bolic, “Per-formance analysis of oscillometric blood pressure estimation techniquesin cardiac patients,” in 2019 IEEE International Symposium on MedicalMeasurements and Applications (MeMeA). IEEE, 2019, pp. 1–

Published

2021-03-16

How to Cite

Quintanar-Gómez, J., Robles-Camarillo, D., Trejo-Macotela, F. R., & Campero-Jurado, I. (2021). Telemonitoring Device of Blood Pressure and Heart Rate Through Multilayer Perceptrons and Pulse Rate Variability. IEEE Latin America Transactions, 19(7), 1233–1241. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/4313

Most read articles by the same author(s)