Probabilistic Optimal Power Flow in Large-Scale Electric Transmission Systems through a Matheuristic Solution Approach
Keywords:
Matheuristic, multi-objective optimization, probabilistic optimal power flow, VND heuristic approachAbstract
This paper proposes a new optimization methodology to solve the AC optimal power flow (OPF) problem considering renewable energy sources (RES). The formulation of the OPF problem comprises the minimization of power generation costs and gas emissions considering a set of operational and physical constraints. This minimization is achieved through controlling power dispatch generators, position changing of the tap transformers, and controllable reactive shunt compensation. RES and demand uncertainties are modeled using the (2m+1) point-estimate method. The mathematical formulation of the OPF problem is a mixed-integer nonlinear programming multiobjective model. A matheuristic algorithm is proposed to solve this problem efficiently, combining a classic nonlinear OPF model and the Variable Neighborhood Descent (VND) metaheuristic algorithm. The potential of the proposed algorithm is shown through numerical experiments carried out using the IEEE 300-bus systems.
Downloads
References
H. Dommel and W. Tinney, “Optimal power flow solutions,” IEEE Trans. Power Appar. Syst., vol. PAS-87, no. 10, pp. 1866–1876, Oct. 1968, doi: 10.1109/TPAS.1968.292150.
J. CARPENTIER, “Optimal power flows,” Int. J. Electr. Power Energy Syst., vol. 1, no. 1, pp. 3–15, Apr. 1979, doi: 10.1016/0142-0615(79)90026-7.
A. Gómez-Expósito, A. J. Conejo, and C. Cañizares, Electric energy systems: Analysis and operation, vol. 17. CRC Press, 2017.
A. A. El-Keib, H. Ma, and J. L. Hart, “Economic dispatch in view of the Clean Air Act of 1990,” IEEE Trans. Power Syst., vol. 9, no. 2, pp. 972–978, May 1994, doi: 10.1109/59.317648.
M. A. Abido, “A new multiobjective evolutionary algorithm for environmental/economic power dispatch,” in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2001, vol. 2, no. SUMMER, pp. 1263–1268, doi: 10.1109/pess.2001.970254.
M. A. Abido, “Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms,” IEEE Trans. Power Syst., vol. 18, no. 4, pp. 1529–1537, 2003, doi: 10.1109/TPWRS.2003.818693.
US Dept. of State, “Leaders Summit on Climate - United States Department of State,” The White House, 2021. https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/23/leaders-summit-on-climate-summary-of-proceedings/ (accessed Jun. 10, 2021).
B. Mather and G. Yuan, “Onward and Upward: Distributed Energy Resource Integration,” IEEE Power Energy Mag., vol. 18, no. 6, Nov. 2020, doi: 10.1109/MPE.2020.3016100.
F. P. Mahdi, P. Vasant, V. Kallimani, J. Watada, P. Y. S. Fai, and M. Abdullah-Al-Wadud, “A holistic review on optimization strategies for combined economic emission dispatch problem,” Renewable and Sustainable Energy Reviews, vol. 81. Elsevier Ltd, pp. 3006–3020, Jan. 2018, doi: 10.1016/j.rser.2017.06.111.
M. A. Ilyas, G. Abbas, T. Alquthami, M. Awais, and M. B. Rasheed, “Multi-Objective optimal power flow with integration of renewable energy sources using fuzzy membership function,” IEEE Access, vol. 8, pp. 143185–143200, 2020, doi: 10.1109/ACCESS.2020.3014046.
A. Maulik and D. Das, “Optimal power dispatch considering load and renewable generation uncertainties in an AC–DC hybrid microgrid,” IET Gener. Transm. Distrib., vol. 13, no. 7, pp. 1164–1176, Apr. 2019, doi: 10.1049/iet-gtd.2018.6502.
M. A. Abido, “Multiobjective evolutionary algorithms for electric power dispatch problem,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 315–329, Jun. 2006, doi: 10.1109/TEVC.2005.857073.
M. A. Abido, “Multiobjective particle swarm optimization for environmental/economic dispatch problem,” Electr. Power Syst. Res., vol. 79, no. 7, pp. 1105–1113, 2009, doi: 10.1016/j.epsr.2009.02.005.
L. H. Wu, Y. N. Wang, X. F. Yuan, and S. W. Zhou, “Environmental/economic power dispatch problem using multi-objective differential evolution algorithm,” Electr. Power Syst. Res., vol. 80, no. 9, pp. 1171–1181, Sep. 2010, doi: 10.1016/j.epsr.2010.03.010.
F. Chen, G. H. Huang, Y. R. Fan, and R. F. Liao, “A nonlinear fractional programming approach for environmental-economic power dispatch,” Int. J. Electr. Power Energy Syst., vol. 78, pp. 463–469, 2016, doi: 10.1016/j.ijepes.2015.11.118.
S. Sivasubramani and K. S. Swarup, “Environmental/economic dispatch using multi-objective harmony search algorithm,” Electr. Power Syst. Res., vol. 81, no. 9, pp. 1778–1785, Sep. 2011, doi: 10.1016/j.epsr.2011.04.007.
D. Aydin, S. Özyön, C. Yaşar, and T. Liao, “Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 144–153, 2014, doi: 10.1016/j.ijepes.2013.06.020.
M. Modiri-Delshad and N. A. Rahim, “Multi-objective backtracking search algorithm for economic emission dispatch problem,” Appl. Soft Comput. J., vol. 40, pp. 479–494, Mar. 2016, doi: 10.1016/j.asoc.2015.11.020.
V. K. Jadoun, N. Gupta, K. R. Niazi, and A. Swarnkar, “Modulated particle swarm optimization for economic emission dispatch,” Int. J. Electr. Power Energy Syst., vol. 73, pp. 80–88, Dec. 2015, doi: 10.1016/j.ijepes.2015.04.004.
A. Y. Abdelaziz, E. S. Ali, and S. M. Abd Elazim, “Combined economic and emission dispatch solution using Flower Pollination Algorithm,” Int. J. Electr. Power Energy Syst., vol. 80, pp. 264–274, Sep. 2016, doi: 10.1016/j.ijepes.2015.11.093.
Y. A. Gherbi, H. Bouzeboudja, and F. Z. Gherbi, “The combined economic environmental dispatch using new hybrid metaheuristic,” Energy, vol. 115, pp. 468–477, Nov. 2016, doi: 10.1016/j.energy.2016.08.079.
Y. A. Gherbi, F. Lakdja, H. Bouzeboudja, and F. Z. Gherbi, “Hybridization of two metaheuristics for solving the combined economic and emission dispatch problem,” Neural Comput. Appl., vol. 31, no. 12, pp. 8547–8559, Dec. 2019, doi: 10.1007/s00521-019-04151-7.
R. Dong and S. Wang, “New optimization algorithm inspired by kernel tricks for the economic emission dispatch problem with valve point,” IEEE Access, vol. 8, pp. 16584–16594, 2020, doi: 10.1109/ACCESS.2020.2965725.
A. Chatterjee, S. P. Ghoshal, and V. Mukherjee, “Solution of combined economic and emission dispatch problems of power systems by an opposition-based harmony search algorithm,” Int. J. Electr. Power Energy Syst., vol. 39, no. 1, pp. 9–20, Jul. 2012, doi: 10.1016/j.ijepes.2011.12.004.
S. Jiang, Z. Ji, and Y. Shen, “A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints,” Int. J. Electr. Power Energy Syst., vol. 55, pp. 628–644, 2014, doi: 10.1016/j.ijepes.2013.10.006.
L. R. Robert and L. R. S. Ravi Singh, “Economic emission dispatch of hydro-thermal-wind using CMQLSPSN technique,” IET Renew. Power Gener., Jul. 2020, doi: 10.1049/iet-rpg.2019.1232.
S. K. Damodaran and T. K. S. Kumar, “Hydro-thermal-wind generation scheduling considering economic and environmental factors using heuristic algorithms,” Energies, vol. 11, no. 2, Feb. 2018, doi: 10.3390/en11020353.
C. Li, W. Wang, and D. Chen, “Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer,” Energy, vol. 171, pp. 241–255, Mar. 2019, doi: 10.1016/j.energy.2018.12.213.
E. X. S. Araujo, M. C. Cerbantes, and J. R. S. Mantovani, “Optimal power flow with renewable generation: a modified NSGA-II-based probabilistic solution approach,” J. Control. Autom. Electr. Syst., no. March 2015, May 2020, doi: 10.1007/s40313-020-00596-7.
S. Montoya-Bueno, J. I. Munoz, and J. Contreras, “A Stochastic Investment Model for Renewable Generation in Distribution Systems,” IEEE Trans. Sustain. Energy, vol. 6, no. 4, pp. 1466–1474, Oct. 2015, doi: 10.1109/TSTE.2015.2444438.
J. M. Home-Ortiz, W. C. De Oliveira, and J. R. S. Mantovani, “Optimal power flow problem solution through a matheuristic approach,” IEEE Access, vol. 9, pp. 84576–84587, 2021, doi: 10.1109/ACCESS.2021.3087626.
B. Borkowska, “Probabilistic Load Flow,” IEEE Trans. Power Appar. Syst., vol. PAS-93, no. 3, pp. 752–759, May 1974, doi: 10.1109/TPAS.1974.293973.
Z. Wang and F. L. Alvarado, “Interval arithmetic in power flow analysis,” IEEE Trans. Power Syst., vol. 7, no. 3, pp. 1341–1349, 1992, doi: 10.1109/59.207353.
J. M. Morales and J. Perez-Ruiz, “Point Estimate Schemes to Solve the Probabilistic Power Flow,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 1594–1601, Nov. 2007, doi: 10.1109/TPWRS.2007.907515.
G. Verbic, a Claudio, and a Canizares, “Probabilistic optimal power flow in electricity markets based on a two point estimate method,” IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1883–1894, 2006.
H. P. Hong, “An efficient point estimate method for probabilistic analysis,” Reliab. Eng. Syst. Saf., vol. 59, no. 3, pp. 261–267, Mar. 1998, doi: 10.1016/S0951-8320(97)00071-9.
R. T. Sataloff, M. M. Johns, and K. M. Kost, Matheuristics Hybridizing Metaheuristics and Mathematical Programming, vol. 10. Boston, MA: Springer US, 2010.
S. Babaeinejadsarookolaee et al., “The power grid library for benchmarking ac optimal power flow algorithms,” arXiv, pp. 1–17, Aug. 2019, [Online]. Available: http://arxiv.org/abs/1908.02788.
R. Fourer, D. M. Gay, and B. W. Kernighan, A modeling language for mathematical programming. 1990.
J. Branke, K. Miettinen, K. Deb, and R. Słowi´nski, Multiobjective optimization: interactive and evolutionary approaches, vol. 5252 LNCS. Springer-Verlag Berlin Heidelberg, 2008.
![](https://latamt.ieeer9.org/public/journals/1/submission_7133_10692_coverImage_en_US.png)