PV Power Curtailment and BESS Management for Distribution Networks: A Practical Approach

Authors

Keywords:

Active power curtailment, battery energy storage system management, thermal limits issues, voltage issues, unbalance voltage rate, stochastic simulation

Abstract

Voltage and thermal limits in distribution feeders are the main features assessed to determine their hosting capacity (HC) due to the integration of distributed generation (DG), especially photovoltaic systems (PV). This paper proposes a PV active power curtailment control strategy combined with the management of battery energy storage systems (BESS) under high penetration of PV systems. In addition, the voltage imbalances rate is included in the evaluated operating parameters in order to reduce voltage and thermal issues and avoid or postpone the feeder reinforcement costs. The study uses Monte-Carlo and stochastic simulations to determine the HC and the PV system's random location. Also, several PV systems capacities are proposed by using statistics. Mexican standards are used for the HC estimation and to perform the power curtailment control strategy. The use of smart PV inverters is considered to reduce or increase the PV active power generation. The BESSs are capable of regulating their charge and discharge cycle independently. The results show the advantages of using strategies separately and in combination can be beneficial to improve the feeder performance.

Downloads

Download data is not yet available.

Author Biographies

Clarissa Nallely Acosta Campas, Intituto Tecnológico de Morelia

received her eng. degree in electromechanical engineering in 2015 from Instituto Tecnologico de Sonora, Mexico. Her M.Sc. degree in electrical engineering in 2018 from Instituto Tecnologico de Morelia and her Ph.D. in 2022 from Instituto Tecnologico de Morelia, Mexico. Her research includes the analysis of the integration of distributed generation to electrical distribution networks.

Manuel Madrigal Martinez, Instituto Tecnologico de Morelia

received his eng. degree in electrical engineer in 1993 from Instituto Tecnologico de Morelia, Mexico. His M.sC. degree in 1996 from Universidad Autonoma de Nuevo Leon and Ph.D. in 2001 from the University of Glasgow, Scotland. He is currently professor-researcher at the Instituto Tecnologico de Morelia, is a IEEE Senior Member. His interest areas are the harmonic propagation and renewable energy sources integration to electrical networks.

Hector Francisco Ruiz Paredes, Instituto Tecnologico de Morelia

received his eng. degree in electrical engineer from Instituto Tecnologico de Morelia, Mexico. His M.Sc. degree in 1977 from Instituto Tecnologico y de Estudios Superiores de Monterrey and his Ph.D. in 1992 from the University of Manchester Institute of Science and Technology U.K. He is a professor-researcher at the Instituto Tecnologico de Morelia, is a IEEE Life Senior Member. His interest areas are the control and automation of electrical distribution systems.

References

Comisión Reguladora de Energía (CRE). (2020) Estadísticas sobre las solicitudes de inteconexión de centrales eléctricas de generación distribuida. Contratos de Interconexión en Pequeña y Mediana Escala y Generación Distribuida, firmados al 31 de diciembre 2019. [Online]. Available: https://www.gob.mx/cre/documentos/pequena-y-mediana-escala

M. E. Baran, H. Hooshyar, Z. Shen, and A. Huang, “Accommodating high PV penetration on distribution feeders,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 1039–1046, 2012.

A. Navarro-Espinosa and L. F. Ochoa, “Probabilistic Impact Assessment of Low Carbon Technologies in LV Distribution Systems,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 2192–2203, 2016.

S. Bhattacharya, T. Saha, and M. J. Hossain, “Fault current contribution from photovoltaic systems in residential power networks,” 2013 Australasian Universities Power Engineering Conference, AUPEC 2013, no. October, pp. 1–6, 2013.

C. Long and L. F. Ochoa, “Voltage control of PV-rich LV networks: OLTC-fitted transformer and capacitor banks,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4016–4025, 2016.

S. M. Ismael, S. H. Abdel Aleem, A. Y. Abdelaziz, and A. F. Zobaa, “State-of-the-art of hosting capacity in modern power systems with distributed generation,” Renewable Energy, vol. 130, pp. 1002–1020, 2019. [Online]. Available: https://doi.org/10.1016/j.renene.2018.07.008

N. Mahmud and A. Zahedi, “Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 582–595, 2016.

H. E. Farag and E. El-Saadany, “Voltage regulation in distribution feeders with high DG penetration: From traditional to smart,” in 2011 IEEE Power and Energy Society General Meeting. IEEE, 2011, pp. 1–8.

E. Mulenga, M. H. Bollen, and N. Etherden, “A review of hosting capacity quantification methods for photovoltaics in low voltage distribution grids,” International Journal of Electrical Power & Energy Systems, vol. 115, p. 105445, 2020.

A. Woyte, V. Van Thong, R. Belmans, and J. Nijs, “Voltage fluctuations on distribution level introduced by photovoltaic systems,” IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 202–209, 2006.

S. You, Y. Liu, J. Tan, M. T. Gonzalez, X. Zhang, Y. Zhang, and Y. Liu, “Comparative Assessment of Tactics to Improve Primary Frequency Response Without Curtailing Solar Output in High Photovoltaic Interconnection Grids,” IEEE Transactions on Sustainable Energy, vol. 10, no. 2, pp. 718–728, 2019.

X. Liang, “Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources,” IEEE Transactions on Industry Applications, vol. 53, no. 2, pp. 855–866, 2017.

P. K. Ray, S. R. Mohanty, and N. Kishor, “Classification of Power Quality Disturbances Due to Environmental Characteristics in Distributed Generation System,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 302–313, 2013.

M. Karimi, H. Mokhlis, K. Naidu, S. Uddin, and A. Bakar, “Photovoltaic penetration issues and impacts in distribution network – A review,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 594–605, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S136403211500903X

J. Traube, F. Lu, D. Maksimovic, J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, and L. Casey, “Mitigation of Solar Irradiance Intermittency in Photovoltaic Power Systems With Integrated Electric-Vehicle Charging Functionality,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 3058–3067, 2013.

M. Beaudin, H. Zareipour, A. Schellenberglabe, and W. Rosehart, “Energy storage for mitigating the variability of renewable electricity sources: An updated review,” Energy for Sustainable Development, vol. 14, no. 4, pp. 302–314, 2010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0973082610000566

N. Kittner, F. Lill, and D. M. Kammen, “Energy storage deployment and innovation for the clean energy transition,” Nature Energy, vol. 2, no. 9, pp. 1–6, 2017.

W. A. Omran, M. Kazerani, and M. M. A. Salama, “Investigation of Methods for Reduction of Power Fluctuations Generated From Large Grid-Connected Photovoltaic Systems,” IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 318–327, 2011.

H. Sugihara, K. Yokoyama, O. Saeki, K. Tsuji, and T. Funaki, “Economic and Efficient Voltage Management Using Customer-Owned Energy Storage Systems in a Distribution Network With High Penetration of Photovoltaic Systems,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 102–111, 2013.

J. F. Sousa, C. L. Borges, and J. Mitra, “PV hosting capacity of LV distribution networks using smart inverters and storage systems: a practical margin,” IET Renewable Power Generation, vol. 14, no. 8, pp. 1332–1339, 2020.

T. Tewari, A. Mohapatra, and S. Anand, “Coordinated Control of OLTC and Energy Storage for Voltage Regulation in Distribution Network With High PV Penetration,” IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 262–272, 2021.

D. Ranamuka, K. M. Muttaqi, and D. Sutanto, “Flexible AC Power Flow Control in Distribution Systems by Coordinated Control of Distributed Solar-PV and Battery Energy Storage Units,” IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2054–2062, 2020.

G. E. Mejia-Ruiz, R. Cárdenas-Javier, M. R. Arrieta Paternina, J. R. Rodríguez-Rodríguez, J. M. Ramirez, and A. Zamora-Mendez, “Coordinated Optimal Volt/Var Control for Distribution Networks via D-PMUs and EV Chargers by Exploiting the Eigensystem Realization,” IEEE Transactions on Smart Grid, vol. 12, no. 3, pp. 2425–2438, 2021.

B. Bletterie, S. Kadam, and H. Renner, “On the classification of low voltage feeders for network planning and hosting capacity studies,” Energies, vol. 11, no. 3, p. 651, 2018.

D. Zhu, A. K. Jain, R. Broadwater, and F. Bruna, “Feeder Voltage Profile Design for Energy Conservation and PV Hosting Capacity Enhancement,” Electric Power Systems Research, vol. 164, pp. 263–271, 2018.

M. M. Othman, M. H. Ahmed, and M. M. Salama, “A Coordinated Real-Time Voltage Control Approach for Increasing the Penetration of Distributed Generation,” IEEE Systems Journal, vol. 14, no. 1, pp. 699– 707, 2019.

R. Kini, D. Raker, T. Stuart, R. Ellingson, M. Heben, and R. Khanna, “Mitigation of PV Variability using Adaptive Moving Average Control,” IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2252–2262, 2019.

P. Chanhom, S. Sirisukprasert, and N. Hatti, “A new mitigation strategy for photovoltaic power fluctuation using the hierarchical simple moving average,” in 2013 IEEE International Workshop on Inteligent Energy Systems (IWIES), 2013, pp. 28–33.

Y. Moumouni, Y. Baghzouz, and R. F. Boehm, “Power “smoothing” of a commercial-size photovoltaic system by an energy storage system,” in 2014 16th International Conference on Harmonics and Quality of Power (ICHQP), 2014, pp. 640–644.

E. Jiménez and M. Madrigal, “Mitigation of PV Power Fluctuations using Moving Average Control in an OpenDSS-Python Environment,” in 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), vol. 4. IEEE, 2020, pp. 1–6.

M. J. E. Alam, K. M. Muttaqi, and D. Sutanto, “A Novel Approach for Ramp-Rate Control of Solar PV Using Energy Storage to Mitigate Output Fluctuations Caused by Cloud Passing,” IEEE Transactions on Energy Conversion, vol. 29, no. 2, pp. 507–518, 2014.

S. Sukumar, H. Mokhlis, S. Mekhilef, M. Karimi, and S. Raza, “Ramprate control approach based on dynamic smoothing parameter to mitigate solar PV output fluctuations,” International Journal of Electrical Power & Energy Systems, vol. 96, pp. 296–305, 2018.

H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine, vol. 8, no. 1, pp. 18–28, 2010.

T. Stetz, K. Diwold, M. Kraiczy, D. Geibel, S. Schmidt, and M. Braun, “Techno-Economic Assessment of Voltage Control Strategies in Low Voltage Grids,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 2125–2132, 2014.

H. Liang, B. J. Choi, W. Zhuang, and X. Shen, “Stability Enhancement of Decentralized Inverter Control Through Wireless Communications in Microgrids,” IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 321– 331, 2013.

H. Liang, B. J. Choi, A. Abdrabou, W. Zhuang, and X. S. Shen, “Decentralized Economic Dispatch in Microgrids via Heterogeneous Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 6, pp. 1061–1074, 2012.

D. Verma, S. Nema, A. Shandilya, and S. K. Dash, “Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 1018–1034, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032115011478

Secretaría de Energía (SENER), Manual de Interconexión de Centrales de Generación con Capacidad Menor que 0.5 MW., 2016, México.

Comisión Reguladora de Energía (CRE), Resolución de la Comisión Reguladora de Energía por la que expide las disposiciones administrativas de carácter general, los modelos de contrato, la metodología de cálculo de contraprestación y las especificaciones técnicas generales, aplicables a las centrales eléctricas de generación distribuida y generación limpia distribuida, Diario Oficial de la Federación (DOF), 2018, México.

Comisión Federal de Electricidad (CFE), “Calidad de la energía: características y límites de las perturbaciones de los parámetros de la energía eléctrica,” p. 43, 2012, México. [Online]. Available: https://lapem.cfe.gob.mx/normas/pdfs/c/L0000 70.pdf

Low voltage network models and low carbon technology profiles. (31 de Mayo de 2015) https://www.enwl.co.uk/lvns.

L. F. Ochoa, C. J. Dent, and G. P. Harrison, “Distribution network capacity assessment: Variable DG and active networks,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 87–95, 2009.

Published

2022-09-05

How to Cite

Acosta Campas, C. N., Madrigal Martinez, M., & Ruiz Paredes, H. F. (2022). PV Power Curtailment and BESS Management for Distribution Networks: A Practical Approach. IEEE Latin America Transactions, 21(1), 133–141. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/7017

Issue

Section

Electric Energy