PV Active Power Curtailment for Distribution Network Management

Reducción de la Potencia Activa Fotovoltaica para la Gestión de la Red de Distribución



Active power curtailment, reinforcement cost, stochastic simulation, thermal issues, voltage issues


Two of the main operation issues in medium voltage (MV) feeders are the voltage and thermal limits and become more relevant when a significant amount of distributed generation is integrated. This paper proposes a control strategy based on PV active power curtailment for distribution network management in order to reduce voltage and thermal issues in MV feeders under high photovoltaic (PV) penetration in order to postpone or avoid feeder reinforcement costs, when usually this kind of analysis is carried out in low voltage feeders. The strategy estimates the hosting capacity (HC) of the feeders based on decreasing the active power generated by the PV systems as required. The proposed approach uses Monte-Carlo simulations to estimate the HC in the feeder. In order to get more realistic scenarios, stochastic simulations are used to determine the random location of the PV systems, and by using statistics, several PV capacities are proposed. Smart PV inverters are employed to reduce their active power output based on the derived control signals. As an example, Mexican standards are used to estimate the HC and to test the control strategy. The results show an increase of HC in the feeder and benefits as better voltage regulation and thermal feeder profile.


Download data is not yet available.

Author Biographies

Clarissa Nallely Acosta Campas, Intituto Tecnológico de Morelia

received her eng. degree in electromechanical engineering in 2015 from Instituto Tecnologico de Sonora, Mexico. She received her M.Sc. degree in electrical engineering in 2018 from Instituto Tecnologico de Morelia, Mexico. She is currently pursuing her Ph.D. from Instituto Tecnologico de Morelia. Her research includes the analysis of the integration of distributed generation to electrical distribution networks.

Manuel Madrigal Martinez, Instituto Tecnologico de Morelia

received his eng. degree in electrical engineer in 1993 from Instituto Tecnologico de Morelia, Mexico. His M.sC. degree in 1996 from Universidad Autonoma de Nuevo Leon and Ph.D. in 2001 from the University of Glasgow, Scotland. He is currently professor-researcher at the Instituto Tecnologico de Morelia, is a IEEE Senior Member. His interest areas are the harmonic propagation and renewable energy sources integration to electrical networks.

Hector Francisco Ruiz Paredes, Instituto Tecnologico de Morelia

received his eng. degree in electrical engineer from Instituto Tecnologico de Morelia, Mexico. His M.Sc. degree in 1977 from Instituto Tecnologico y de Estudios Superiores de Monterrey and his Ph.D. in 1992 from the University of Manchester Institute of Science and Technology U.K. He is a professor-researcher at the Instituto Tecnologico de Morelia, is a IEEE Senior Member. His interest areas are the control and automation of electrical distribution systems.


N. C. Koutsoukis, P. S. Georgilakis, and N. D. Hatziargyriou, “Multistage coordinated planning of active distribution networks,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 32–44, 2018.

M. E. Baran, H. Hooshyar, Z. Shen, and A. Huang, “Accommodating high PV penetration on distribution feeders,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 1039–1046, 2012.

A. Navarro-Espinosa and L. F. Ochoa, “Probabilistic Impact Assessment of Low Carbon Technologies in LV Distribution Systems,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 2192–2203, 2016.

S. Bhattacharya, T. Saha, and M. J. Hossain, “Fault current contribution from photovoltaic systems in residential power networks,” 2013 Australasian Universities Power Engineering Conference, AUPEC 2013, no. October, pp. 1–6, 2013.

C. Long and L. F. Ochoa, “Voltage control of PV-rich LV networks: OLTC-fitted transformer and capacitor banks,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4016–4025, 2016.

S. M. Ismael, S. H. Abdel Aleem, A. Y. Abdelaziz, and A. F. Zobaa, “State-of-the-art of hosting capacity in modern power systems with distributed generation,” Renewable Energy, vol. 130, pp. 1002–1020, 2019.

C. Acosta-Campas, M. Madrigal, and H. Ruiz-Paredes, “Impact study of pv penetration on mexican mv distribution network,” in 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), vol. 4, pp. 1–6, 2020.

A. Tweedie and E. Doris, “Comparing Germany’s and California’s Interconnection Processes for PV Systems,” tech. rep., National Renewable Energy Laboratory (NREL, 2011).

CRE, “Estadísticas sobre las solicitudes de interconexión de centrales eléctricas de generación distribuida,” 2020. Contratos de Interconexión en Pequeña y Mediana Escala y Generación Distribuida, firmados al 31 de diciembre 2019.

A. Suchite-Remolino, H. F. Ruiz-Paredes, and V. Torres-García, “A new approach for pv nodes using an ecient backward/forward sweep power flow technique,” IEEE Latin America Transactions, vol. 18, no. 06, pp. 992–999, 2020.

N. Mahmud and A. Zahedi, “Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 582–595, 2016.

M. Bollen, Y. Yang, and F. Hassan, “Integration of distributed generation in the power system-a power quality approach,” in 2008 13th International Conference on Harmonics and Quality of Power, pp. 1–8, IEEE, 2008.

M. H. Bollen and F. Hassan, Integration of distributed generation in the power system, vol. 80. John wiley & sons, 2011.

T. Stetz, W. Yan, and M. Braun, “Voltage control in distribution systems with high level pv-penetration,” in 25th European PV Solar Energy Conference, pp. 5000–5006, 2010.

B. Bletterie, S. Kadam, and H. Renner, “On the classification of low voltage feeders for network planning and hosting capacity studies,” Energies, vol. 11, no. 3, p. 651, 2018.

E. Mulenga, M. H. Bollen, and N. Etherden, “A review of hosting capacity quantification methods for photovoltaics in low-voltage distribution grids,” International Journal of Electrical Power & Energy Systems, vol. 115, p. 105445, 2020.

A. N. Haque, P. H. Nguyen, T. H. Vo, and F. W. Bliek, “Agent-based unified approach for thermal and voltage constraint management in lv distribution network,” Electric Power Systems Research, vol. 143, pp. 462–473, 2017.

D. Zhu, A. K. Jain, R. Broadwater, and F. Bruna, “Feeder voltage profile design for energy conservation and pv hosting capacity enhancement,” Electric Power Systems Research, vol. 164, pp. 263–271, 2018.

M. M. Othman, M. H. Ahmed, and M. M. Salama, “A coordinated real-time voltage control approach for increasing the penetration of distributed generation,” IEEE Systems Journal, vol. 14, no. 1, pp. 699– 707, 2019.

J. C. Vasquez, J. M. Guerrero, A. Luna, P. Rodríguez, and R. Teodorescu, “Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes,” IEEE transactions on industrial electronics, vol. 56, no. 10, pp. 4088–4096, 2009.

B. Enayati, “Revised ieee 1547 standard for interconnecting distributed energy resources with electric power systems-national grid solar program,” IEEE PES ISGT Europe, 2018.

T. Stetz, K. Diwold, M. Kraiczy, D. Geibel, S. Schmidt, and M. Braun, “Techno-economic assessment of voltage control strategies in low voltage grids,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 2125–2132, 2014.

H. Liang, B. J. Choi, W. Zhuang, and X. Shen, “Stability enhancement of decentralized inverter control through wireless communications in microgrids,” IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 321–331, 2013.

H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine, vol. 8, no. 1, pp. 18–28, 2010.

H. Liang, B. J. Choi, A. Abdrabou, W. Zhuang, and X. S. Shen, “Decentralized economic dispatch in microgrids via heterogeneous wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 6, pp. 1061–1074, 2012.

Python, “https://www.python.org/downloads/release/python-373/r,” 27 de Marzo de 2019.

OpenDSS, “https://sourceforge.net/projects/electricdss/,” 19 de Marzo de 2019.

Low voltage network models and low carbon technology profiles, “https://www.enwl.co.uk/lvns,” 31 de Mayo de 2015.

S. de Energía (SENER), Manual de Interconexión de Centrales de Generación con Capacidad Menor que 0.5 MW., 2016. México.

C. R. de Energía (CRE), Resolución de la Comisión Reguladora de Energía por la que expide las disposiciones administrativas de carácter general, los modelos de contrato, la metodología de cálculo de contraprestación y las especificaciones técnicas generales, applicable a las centrales eléctricas de generación distribuida y generación limpia distribuida. Diario Oficial de la Federación (DOF), 2018. México.

Comisión Federal de Electricidad (CFE), “Calidad de la energía: características y límites de las perturbaciones de los parámetros de la energía eléctrica,” 2012. México.

A. Ballanti, F. Pilo, A. Navarro-Espinosa, and L. F. Ochoa, “Assessing the benefits of pv var absorption on the hosting capacity of lv feeders,” in IEEE PES ISGT Europe 2013, pp. 1–5, IEEE, 2013.

L. F. Ochoa, C. J. Dent, and G. P. Harrison, “Distribution network capacity assessment: Variable dg and active networks,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 87–95, 2009.

M. Steurer, U. Fahl, A. Voß, and P. Deane, “Curtailment: An option for cost-ecient integration of variable renewable generation?,” in Europe’s Energy Transition, pp. 97–104, Elsevier, 2017.



How to Cite

Acosta Campas, C. N., Madrigal Martinez, M., & Ruiz Paredes, H. F. (2022). PV Active Power Curtailment for Distribution Network Management: Reducción de la Potencia Activa Fotovoltaica para la Gestión de la Red de Distribución . IEEE Latin America Transactions, 20(7), 2010–2019. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/6350



Electric Energy