A Review of Real Time Digital Simulations: Theory and Applications for the Energy Transition

Authors

Keywords:

Digital Real Time Simulation, Power Hardware-in-the loop., Real Time Simulation

Abstract

The arrival of the energy transition to the global electricity scene has led to the implementation of new technologies in power systems and modified the way that the energy is generated, distributed and consumed. The analysis of the operation and the consequences of the inclusion of new technologies become a very important topic in the studies carried out by the utilities. Real-Time Digital Simulators (RTDS) have become a powerful modeling tool that allow to analyze power system models with a high level of fidelity, permitting to anticipate problems and the assessment of solution strategies. Due to the increase in the use of this technology and considering that there are no review articles on RTDS applications written in Spanish, this paper presents an explanation of the characteristics of RTDS along with an updated state of the art related to applications in Energy Transition as a theoretical framework with a large amount of information collected for future researches in Latin America.

Downloads

Download data is not yet available.

Author Biographies

Luis Felipe Gaitán Cubides, Ingenieria Especializada IEB S.A.

Luis Felipe Gaitán Cubides received his B.Sc. from the Universidad Distrital Francisco Jose de Caldas. He is currently working toward the M.Eng. degree in Transmission and Distribution Systems from Universidad Pontificia Bolivariana. Currently he is a Design Engineer in the protection studies area at Ingenieria Especializada IEB S.A. His major research is the protection of electrical power systems with distributed generators of Non-Conventional Sources of Renewable Energy.

Jorge Wilson González Sánchez, Universidad Pontificia Bolivariana

Electrical Eng., MSc. and PhD. Professor at Universidad Pontificia Bolivariana, Colombia in Electrical Eng. Faculty. Formerly, he was with HMV Consulting, Siemens PTD Germany and for Utility EPM. He was researcher at Univ. Kempten and Power Systems Inst. Erlangen Univ. Germany. His research activities include protective relaying, optimization, power systems, HVDC, FACTS, substations and renewable energies.

Luis Alfonso Giraldo Velazquez, Ingenieria Especializada IEB S.A.

Electrical Eng., MEconSc at Universidad Nacional de Colombia. IEEE Senior Member. Technical advisor at Ingenieria Especializada IEB S.A.  Formerly, he was with Baltimore Gas & Electric. His professional experience focuses on studies and tests on electrical protective equipment. He is currently developing studies and tests with Real Time Digital Simulations - RTDS.

References

T. Strasser et al., “A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2424–2438, 2015, doi: 10.1109/TIE.2014.2361486.

M. Stevic et al., “Multi-site European framework for real-time co-simulation of power systems,” IET Gener. Transm. Distrib., vol. 11, no. 17, pp. 4126–4135, 2017, doi: 10.1049/iet-gtd.2016.1576.

N. Achury Beltrán, “Simulación y control de sistemas de potencia mediante el monitoreo del SPI en Real-Time con el uso de sincrofasores,” Universidad de Los Andes, 2014.

M. Tostado Véliz, “Técnicas de simulación de estabilidad de tensión en sistemas eléctricos de gran dimensión,” Universidad de Sevilla, 2017.

J. N. Bélanger, J., Venne, P., & Paquin, “The What, Where and Why of Real-Time Simulation,” Planet RT, vol. 1, no. 1, pp. 25–29, 2010, doi: 10.4028/www.scientific.net/MSF.800-801.489.

M. Tostado Véliz, “Técnicas de simulación de estabilidad de tensión en sistemas eléctricos de gran dimensión,” Universidad de Sevilla, 2017.

S. S. Noureen, N. Shamim, V. Roy, and S. B. Bayne, “Real-Time Digital Simulators: A Comprehensive Study on System Overview, Application, and Importance,” Int. J. Res. Eng., vol. 4, no. 11, pp. 266–277, 2017, doi: 10.21276/ijre.2017.4.11.3.

X. Guillaud et al., “Applications of Real-Time Simulation Technologies in Power and Energy Systems,” IEEE Power Energy Technol. Syst. J., vol. 2, no. 3, pp. 103–115, 2015, doi: 10.1109/jpets.2015.2445296.

M. D. Omar Faruque et al., “Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis,” IEEE Power Energy Technol. Syst. J., vol. 2, no. 2, pp. 63–73, 2015, doi: 10.1109/jpets.2015.2427370.

S. K. Sahoo, A. K. Sinha, and N. K. Kishore, “Modeling and real-time simulation of an AC microgrid with solar photovoltaic system,” 2015 Annu. IEEE India Conf., 2015, doi: 10.1109/INDICON.2015.7443619.

R. A. Guasca Baracaldo, “Modelación computacional y simulación real – time de una conexión HVDC con Hardware – In – The Loop,” Universidad de Los Andes, 2012.

M. Panwar, B. Lundstrom, J. Langston, S. Suryanarayanan, and S. Chakraborty, “An overview of real time hardware-in-the-loop capabilities in digital simulation for electric microgrids,” 45th North Am. Power Symp. NAPS 2013, pp. 1–6, 2013, doi: 10.1109/NAPS.2013.6666861.

M. Dargahi, A. Ghosh, G. Ledwich, and F. Zare, “Studies in power hardware in the loop (PHIL) simulation using real-time digital simulator (RTDS),” PEDES 2012 - IEEE Int. Conf. Power Electron. Drives Energy Syst., 2012, doi: 10.1109/PEDES.2012.6484500.

S. Mojlish, N. Erdogan, D. Levine, and A. Davoudi, “Review of Hardware Platforms for Real-Time Simulation of Electric Machines,” IEEE Trans. Transp. Electrif., vol. 3, no. 1, pp. 130–146, 2017, doi: 10.1109/TTE.2017.2656141.

S. Goyal, G. Ledwich, and A. Ghosh, “Power network in loop: A paradigm for real-time simulation and hardware testing,” IEEE Trans. Power Deliv., vol. 25, no. 2, pp. 1083–1092, 2010, doi: 10.1109/TPWRD.2009.2034815.

E. García-Martínez, J. F. Sanz, J. Muñoz-Cruzado, and J. M. Perié, “A review of PHIL testing for smart grids—selection guide, classification and online database analysis,” Electron., vol. 9, no. 3, pp. 1–23, 2020, doi: 10.3390/electronics9030382.

H. W. Dommel, “Digital Computer Solution of Electromagnetic Transients in Single- and Multiphase Networks,” IEEE Trans. Power Appar. Syst., vol. PAS-88, no. 4, pp. 388–399, 1969, doi: 10.1109/TPAS.1969.292459.

H. W. Dommel, “Nonlinear and time-varying elements in digital simulation of electromagnetic transients,” IEEE Trans. Power Appar. Syst., vol. PAS-90, no. 6, pp. 2561–2567, 1971, doi: 10.1109/TPAS.1971.292905.

Dommel. Hermann W and Sato N, “Fast Transient Stability Solutions,” IEEE Trans. Power Appar. Syst., vol. PAS-91, no. 4, pp. 1643–1650, 1972.

H. W. Dommel and W. S. Meyer, “Computation of Electromagnetic Transients,” Proc. IEEE, vol. 62, no. 7, pp. 983–993, 1974, doi: 10.1109/PROC.1974.9550.

V. Brandwajn, W. S. Meyer, and H. W. Dommel, “Synchronous Machine Initialization for Unbalanced Network Conditions Within an Electromagnetic Transients Program.,” IEEE Conf. Proc. Power Ind. Comput. Appl. Conf. 1979. PICA-79, pp. 38–41, 1979, doi: 10.1109/PICA.1979.720043.

V. Chindu and A. M. Kulkarni, “A Generalised State-Space Approach for Studying EMTP Simulation Models,” 2018 20th Natl. Power Syst. Conf. NPSC 2018, pp. 1–6, 2018, doi: 10.1109/NPSC.2018.8771799.

V. Jalili-Marandi, E. Robert, V. Lapointe, and J. Belanger, “A real-time transient stability simulation tool for large-scale power systems,” IEEE Power Energy Soc. Gen. Meet., pp. 1–7, 2012, doi: 10.1109/PESGM.2012.6344767.

R. Brandl, J. Montoya, T. Degner, and D. Strauss-Mincu, “Power system stability studies including real hardware using phasor power hardware-in-The-loop technology,” Proc. - 2018 IEEE Int. Conf. Ind. Electron. Sustain. Energy Syst. IESES 2018, vol. 2018-Janua, pp. 552–559, 2018, doi: 10.1109/IESES.2018.8349937.

G. R. Bharati, S. Chakraborty, C. Duan, and T. Nishikawa, “An integrated transmission-distribution modeling for phasor-domain dynamic analysis in real-time,” 2020 IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf. ISGT 2020, 2020, doi: 10.1109/ISGT45199.2020.9087705.

M. Mirz, A. Estebsari, F. Arrigo, E. Bompard, and A. Monti, “Dynamic phasors to enable distributed real-time simulation,” 2017 6th Int. Conf. Clean Electr. Power Renew. Energy Resour. Impact, ICCEP 2017, pp. 139–144, 2017, doi: 10.1109/ICCEP.2017.8004805.

M. Stevic and A. Monti, “A Bilateral Teleoperation Approach for Interface Algorithms in Distributed Real-Time Simulations,” 2018 IEEE Work. Complex. Eng. COMPENG 2018, 2018, doi: 10.1109/CompEng.2018.8536241.

J. Montoya et al., “Advanced laboratory testing methods using real-time simulation and hardware-in-the-loop techniques: A survey of smart grid international research facility network activities,” Energies, vol. 13, no. 12, 2020, doi: 10.3390/en13123267.

M. D. Heffernan, K. S. Turner, J. Arrillaga, and C. P. Arnold, “Computation of a.c.-d.c. system disturbances — Part I. Interactive coordination of generator and convertor transient models,” IEEE Trans. Power Appar. Syst., vol. PAS-100, no. 11, pp. 4341–4348, 1981, doi: 10.1109/TPAS.1981.316825.

K. S. Turner, M. D. Heffernan, C. P. Arnold, and J. Arrillaga, “Computation of a.c.-d.c. system disturbances. Pt. III — Transient stability assessment,” IEEE Trans. Power Appar. Syst., vol. PAS-100, no. 11, pp. 4356–4363, 1981, doi: 10.1109/TPAS.1981.316846.

A. S. Musleh, S. M. Muyeen, A. Al-Durra, and I. Kamwa, “Testing and validation of wide-area control of STATCOM using real-time digital simulator with hybrid HIL-SIL configuration,” IET Gener. Transm. Distrib., vol. 11, no. 12, pp. 3039–3049, 2017, doi: 10.1049/iet-gtd.2016.1557.

T. Joseph, K. Jose, C. E. Ugalde-Loo, G. Li, and J. Liang, “Real-time hardware-in-the-loop platform for hybrid AC/DC power system studies,” 2019 IEEE Milan PowerTech, PowerTech 2019, pp. 1–6, 2019, doi: 10.1109/PTC.2019.8810905.

L. A. Grégoire, M. Sleiman, H. F. Blanchette, and K. Al-Haddad, “Numerical stability of multi-rate system using Lyapunov’s theorem: Applied to real-time simulation,” Proc. IEEE Int. Conf. Ind. Technol., vol. 2015-June, no. June, pp. 2537–2541, 2015, doi: 10.1109/ICIT.2015.7125472.

X. Zhai et al., “Multi-rate real-time simulation of modular multilevel converter for HVDC grids application,” Proc. IECON 2017 - 43rd Annu. Conf. IEEE Ind. Electron. Soc., vol. 2017-Janua, pp. 1325–1330, 2017, doi: 10.1109/IECON.2017.8216225.

E. Shoubaki, M. Arefi, M. Chamana, B. H. Chowdhury, and B. Parkideh, “Time base synchronization for interconnecting Real-Time platforms in co-simulation,” IEEE Ind. Appl. Soc. 52nd Annu. Meet. IAS 2016, pp. 4–7, 2016, doi: 10.1109/IAS.2016.7731958.

J. Montoya, R. Brandl, M. Vogt, F. Marten, M. Maniatopoulos, and A. Fabian, “Asynchronous integration of a real-time simulator to a geographically distributed controller through a co-simulation environment,” Proc. IECON 2018 - 44th Annu. Conf. IEEE Ind. Electron. Soc., vol. 1, pp. 4013–4018, 2018, doi: 10.1109/IECON.2018.8591486.

D. Bian, M. Kuzlu, M. Pipattanasomporn, S. Rahman, and Y. Wu, “Real-time co-simulation platform using OPAL-RT and OPNET for analyzing smart grid performance,” IEEE Power Energy Soc. Gen. Meet., pp. 1–5, 2015, doi: 10.1109/PESGM.2015.7286238.

P. Peidaee, A. Kalam, and J. Shi, “A real-time simulation framework for system protection in smart grid applications,” Australas. Univ. Power Eng. Conf. AUPEC 2018, pp. 1–5, 2018, doi: 10.1109/AUPEC.2018.8757972.

V. Venkataramanan, A. Srivastava, and A. Hahn, “Real-time co-simulation testbed for microgrid cyber-physical analysis,” 2016 Work. Model. Simul. Cyber-Physical Energy Syst., 2016, doi: 10.1109/MSCPES.2016.7480220.

Z. Zhou, Q. Zhang, S. Li, Q. Jin, and Y. Zhang, “A real-Time co-simulation research based on VSC closed-loop control,” 2016 IEEE Int. Conf. Power Syst. Technol. POWERCON 2016, 2016, doi: 10.1109/POWERCON.2016.7753961.

C. Rehtanz and X. Guillaud, “Real-time and co-simulations for the development of power system monitoring, control and protection,” 19th Power Syst. Comput. Conf. PSCC 2016, 2016, doi: 10.1109/PSCC.2016.7541030.

E. Bompard et al., “A multi-site real-time co-simulation platform for the testing of control strategies of distributed storage and V2G in distribution networks,” 2016 18th Eur. Conf. Power Electron. Appl. EPE 2016 ECCE Eur., 2016, doi: 10.1109/EPE.2016.7695666.

W. Wang, H. R. Wickramasinghe, K. Ma, and G. Konstantinou, “Real-time Co-Simulation for Electrical and Thermal Analysis of Power Electronics,” 2019 9th Int. Conf. Power Energy Syst. ICPES 2019, 2019, doi: 10.1109/ICPES47639.2019.9105352.

T. Duan, Z. Shen, and V. Dinavahi, “Multi-Rate Mixed-Solver for Real-Time Nonlinear Electromagnetic Transient Emulation of AC/DC Networks on FPGA-MPSoC Architecture,” IEEE Power Energy Technol. Syst. J., vol. 6, no. 4, pp. 183–194, 2019, doi: 10.1109/jpets.2019.2933250.

J. Zhu and B. Zhang, “Multi-rate real-time simulation method based on the norton equivalent,” Energies, vol. 13, no. 17, 2020, doi: 10.3390/en13174562.

P. Le-Huy and S. Guérette, “Real-Time Multi-Rate Electromagnetic Transient Simulation on Conventional CPUs,” Int. Conf. Power Syst. Transients, 2019.

F. Li et al., “Review of Real-time Simulation of Power Electronics,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 4, pp. 796–808, 2020, doi: 10.35833/MPCE.2018.000560.

P. . McLaren, R. Kuffel, R. Wierckx, J. Giesbrecht, and L. Arendt, “A real time digital simulator for testing relays,” IEEE Trans. Power Deliv., vol. 7, no. 1, 1992, doi: 10.1109/61.108909.

R. Kuffel, J. Giesbrecht, T. Maguire, R. . Wierckx, and M. P, “RTDS - A Fully Digital Power System Simulator Operating in Real Time,” ICDS ’95. First Int. Conf. Digit. Power Syst. Simulators, pp. 498–503, 1995.

S. K. Sharma, “Computational Intelligence Techniques Used for Stock Market Prediction : A Systematic Review,” IEEE Lat. Am. Trans., vol. 07, no. 03, pp. 176–182, 2021, [Online]. Available: http://www.ijmtst.com/vol7issue03.html.

N. Lin and V. Dinavahi, “Detailed Device-Level Electrothermal Modeling of the Proactive Hybrid HVDC Breaker for Real-Time Hardware-in-the-Loop Simulation of DC Grids,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1118–1134, 2018, doi: 10.1109/TPEL.2017.2685423.

Xiaoping Tu, Louis-A. Dessaint, Nicolas Fallati and Bruno De Kelper, “Modeling and real-time simulation of internal faults in synchronous generators with parallel-connected windings,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1400–1409, 2007, doi: 10.1109/TIE.2007.892004.

H. Li, M. Steurer, K. L. Shi, S. Woodruff, and D. Zhang, “Development of a unified design, test, and research platform for wind energy systems based on hardware-in-the-loop real-time simulation,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1144–1151, 2006, doi: 10.1109/TIE.2006.878319.

R. V. Chacko, M. L. Sreedevi, and G. R. Mineeshma, “Electric vehicle power train simulation in forward modelling approach to enable real-time simulation and HIL controller prototyping,” 2014 IEEE Int. Conf. Power Electron. Drives Energy Syst. PEDES 2014, 2014, doi: 10.1109/PEDES.2014.7042039.

N. D. Peñafiel Ojeda, “Diseño e implementación de banco de pruebas para validación de protecciones eléctricas ante fallas en sistemas de distribución mediante simulación en tiempo real,” Universidad de los Andes, 2014.

L. A. Montoya Salazar, “Implementación de protecciones adaptativas por medio de simulación RT- HIL,” Universidad de Los Andes, 2012.

J. E. Malo Rojas, “Simulación en tiempo real de un sistema de almacenamiento de energía a base de baterías,” Universidad de Los Andes, 2015.

M. Tursini, L. Di Leonardo, C. Olivieri, and E. Della Loggia, “Rapid control prototyping of IPM drives by real time simulation,” Proc. - 8th EUROSIM Congr. Model. Simulation, EUROSIM 2013, pp. 364–371, 2015, doi: 10.1109/EUROSIM.2013.116.

A. Tepljakov, E. Petlenkov, and J. Belikov, “Implementation and real-time simulation of a frectional-order controller using a MATLAB based prototyping platform,” 2012 13th Bienn. Balt. Electron. Conf., pp. 145–148, 2012, doi: 10.1109/BEC.2012.6376837.

L. Jun, G. Ying-Qing., and W. Hai-Quan., “Rapid prototyping real-time simulation platform for digital electronic engine control,” 2008 2nd Int. Symp. Syst. Control Aerosp. Astronaut. ISSCAA 2008, no. 188, 2008, doi: 10.1109/ISSCAA.2008.4776230.

K. Ou et al., “MMC-HVDC simulation and testing based on real-time digital simulator and physical control system,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 2, no. 4, pp. 1–8, 2014, doi: 10.1109/JESTPE.2014.2337512.

C. Lin, D. Liu, X. Wu, Z. He, W. Wang, and W. Li, “Setup and performance of a combined hardware-in-loop and software-in-loop test for MMC-HVDC control and protection system,” 9th Int. Conf. Power Electron. - ECCE Asia "Green World with Power Electron. ICPE 2015-ECCE Asia, pp. 1333–1338, 2015, doi: 10.1109/ICPE.2015.7167952.

P. Forsyth, T. Maguire, and R. Kuffel, “Real time digital simulation for control and protection system testing,” PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., vol. 1, pp. 329–335, 2004, doi: 10.1109/pesc.2004.1355765.

C. Rehtanz and X. Guillaud, “Real-time and co-simulations for the development of power system monitoring, control and protection,” 19th Power Syst. Comput. Conf. PSCC 2016, pp. 1–20, 2016, doi: 10.1109/PSCC.2016.7541030.

E. Gómez-Luna, L. Palacios-Bocanegra, and J. E. Candelo-Becerra, “Real-time simulation with OPAL-RT technologies and applications for control and protection schemes in electrical networks,” J. Eng. Sci. Technol. Rev., vol. 12, no. 3, pp. 136–144, 2019, doi: 10.25103/jestr.123.19.

F. Quintero-Zuluaga et al., “Hardware in the loop design and testing of a PMU-based special protection scheme: Case study of colombia-ecuador interconnection,” 2020 IEEE PES Transm. Distrib. Conf. Exhib. - Lat. Am. T D LA 2020, 2020, doi: 10.1109/TDLA47668.2020.9326098.

J. F. Quintero-Zuluaga et al., “Decision Tree-Based Automated Test-Bed for Performance Validation of Line Protection Relays Using a Hardware-in-the-Loop Architecture,” 2020 IEEE Colomb. Conf. Appl. Comput. Intell. ColCACI 2020 - Proc., 2020, doi: 10.1109/ColCACI50549.2020.9247877.

X. Wu, H. Figueroa, and A. Monti, “Testing of digital controllers using real-time hardware in the loop simulation,” PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., vol. 5, pp. 3622–3627, 2004, doi: 10.1109/PESC.2004.1355116.

J. D. Bernal Burgos, “Desarrollo de una plataforma de procesamiento en tiempo real y Hardware in the Loop para el uso y configuración de protecciones adaptativas.,” Universidad de los Andes, 2014.

G. A. Granados García, “Diseño de un sistema RT-HIL para uso de relés en condición de protecciones adaptativas,” Universidad de los Andes, 2015.

D. I. Clavijo Rey, “Metodología para realización de pruebas end-to-end en laboratorio,” Universidad de Los Andes, 2016.

E. Gomez-Luna, C. Zapata, and M. F. Bravo, “Simulación en tiempo real como parte de la validación para la implementación de subestaciones digitales,” 2019 FISE-IEEE/CIGRE Conf. - Living Energy Transition, FISE/CIGRE 2019, pp. 1–6, 2019, doi: 10.1109/FISECIGRE48012.2019.8985001.

M. Chaitanya, G. Gurrala, and G. Narayanan, “Real-Time simulation of an Islanded microgrid using educational Miniature Full Spectrum Simulator,” 2016 Natl. Power Syst. Conf. NPSC 2016, no. 1, 2016, doi: 10.1109/NPSC.2016.7858980.

P. M. Menghal and A. J. Laxmi, “Real time simulation: A novel approach in engineering education,” ICECT 2011 - 2011 3rd Int. Conf. Electron. Comput. Technol., vol. 1, pp. 215–219, 2011, doi: 10.1109/ICECTECH.2011.5941592.

M. Heras Cervantes, M. C. Garcia Ramirez, J. Correa Gómez, A. C. Tellez Anguiano, and F. Martinez Cárdenas, “Real-time simulation of a buck converter for educational purposes in a LabVIEW®-programmed FPGA,” 2014 IEEE Int. Autumn Meet. Power, Electron. Comput., pp. 2–7, 2014, doi: 10.1109/ROPEC.2014.7036306.

Z. Jiang, G. Konstantinou, Z. Zhong, and P. Acuna, “Real-Time digital simulation based laboratory test-bench development for research and education on solar pv systems,” 2017 Australas. Univ. Power Eng. Conf. AUPEC 2017, vol. 2017-Novem, pp. 1–6, 2018, doi: 10.1109/AUPEC.2017.8282471.

J. Montoya, R. Brandl, M. Vogt, F. Marten, M. Maniatopoulos, and A. Fabian, “Asynchronous integration of a real-time simulator to a geographically distributed controller through a co-simulation environment,” Proc. IECON 2018 - 44th Annu. Conf. IEEE Ind. Electron. Soc., pp. 4013–4018, 2018, doi: 10.1109/IECON.2018.8591486.

S. Vogel et al., “Improvements to the Co-simulation Interface for Geographically Distributed Real-time Simulation,” IECON Proc. (Industrial Electron. Conf., vol. 2019-October, pp. 6655–6662, 2019, doi: 10.1109/IECON.2019.8926918.

M. O. Faruque, M. Sloderbeck, M. Steurer, and V. Dinavahi, “Thermo-electric co-simulation on geographically distributed real-time simulators,” 2009 IEEE Power Energy Soc. Gen. Meet. PES ’09, pp. 1–7, 2009, doi: 10.1109/PES.2009.5275631.

C. Mao et al., “A 400-V/50-kVA Digital-Physical Hybrid Real-Time Simulation Platform for Power Systems,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3666–3676, 2017, doi: 10.1109/TIE.2017.2760844.

A. Benigni and A. Monti, “A parallel approach to real-time simulation of power electronics systems,” IEEE Trans. Power Electron., vol. 30, no. 9, 2015, doi: 10.1109/TPEL.2014.2361868.

H. Morais, P. Vancraeyveld, A. H. B. Pedersen, M. Lind, H. Johannsson, and J. Ostergaard, “SOSPO-SP: Secure operation of sustainable power systems simulation platform for real-time system state evaluation and control,” IEEE Trans. Ind. Informatics, vol. 10, no. 4, pp. 2318–2329, 2014, doi: 10.1109/TII.2014.2321521.

V. Karapanos, S. De Haan, and K. Zwetsloot, “Real time simulation of a power system with VSG hardware in the loop,” IECON Proc. (Industrial Electron. Conf., pp. 3748–3754, 2011, doi: 10.1109/IECON.2011.6119919.

G. W. Chang, Y. J. Liu, V. Dinavahi, and M. J. Ke, “Applications of real-time simulation techniques for harmonics study of an industrial power system,” IEEE Power Energy Soc. 2008 Gen. Meet. Convers. Deliv. Electr. Energy 21st Century, PES, 2008, doi: 10.1109/PES.2008.4596633.

M. Steurer and S. Woodruff, “Real time digital harmonic modeling and simulation: An advanced tool for understanding power system harmonics mechanisms,” 2004 IEEE Power Eng. Soc. Gen. Meet., vol. 1, pp. 1–4, 2004, doi: 10.1109/pes.2004.1372921.

Energetica 2030, Webinar - Real Time Simulation Advantages for large infraestructures. https://youtu.be/d13Z7LsJe88, 2020.

L. A. Montoya, D. Montenegro, and G. Ramos, “Adaptive protection testbed using real time and hardware-in-the-loop simulation,” 2013 IEEE Grenoble Conf. PowerTech, POWERTECH 2013, 2013, doi: 10.1109/PTC.2013.6652149.

Mehdi Monadi, Cosmin Koch-Ciobotaru, Alvaro Luna, Jose Ignacio Candela, and P. Rodriguez, “Implementation of the differential protection for MVDC distribution systems using real-time simulatio and hardware-in-the-loop,” IEEE Energy Convers. Congr. Expo., pp. 3380–3385, 2015, doi: 10.1109/ECCE.2015.7310137.

D. X. Du et al., “Design of a real time digital simulation system for test of new protection schemes,” 2006 Int. Conf. Power Syst. Technol. POWERCON2006, 2006, doi: 10.1109/ICPST.2006.321643.

Z. Q. Bo, A. Klimek, Y. L. Ren, and J. H. He, “A real time digital simulation system for testing of integrated protection schemes,” 2008 Jt. Int. Conf. Power Syst. Technol. POWERCON IEEE Power India Conf. POWERCON 2008, 2008, doi: 10.1109/ICPST.2008.4745260.

J. Langston, M. Steurer, S. Woodruff, T. Baldwin, and J. Tang, “A generic real-time computer simulation model for superconducting fault current limiters and its application in system protection studies,” IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 2090–2093, 2005, doi: 10.1109/TASC.2005.849459.

P. Romano, M. Pignati, and M. Paolone, “Integration of an IEEE Std. C37.118 compliant PMU into a real-time simulator,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015, 2015, doi: 10.1109/PTC.2015.7232794.

B. C. Karatas, H. Johannsson, and A. H. Nielsen, “Real-time countermeasures preventing power system instability by using PMU data from RTDS simulation,” IEEE PES Asia-Pacific Power Energy Eng. Conf. APPEEC, pp. 1787–1791, 2016, doi: 10.1109/APPEEC.2016.7779796.

A. W. Reis, F. G. K. Guarda, and C. C. Gastaldini, “Simulation of a Phasor Measurement Unit in Real Time Using Typhoon Virtual HIL,” 2019 IEEE PES Conf. Innov. Smart Grid Technol. ISGT Lat. Am. 2019, 2019, doi: 10.1109/ISGT-LA.2019.8895261.

D. Liu et al., “A flexible real time network model for evaluating HVDC systems’ impact on AC protection performance,” 9th Renew. Power Gener. Conf., pp. 216–221, 2021, doi: 10.1049/icp.2021.1372.

D. Liu et al., “Hardware-in-the-Loop Tests and Analysis of Hvdc System’S Impact on Distance Protection Performance,” 17th Int. Conf. AC DC Power Transm., pp. 96–101, 2021, doi: 10.1049/icp.2021.2451.

Y. Zhang, H. Ding, and R. Kuffel, “Key techniques in real time digital simulation for closed-loop testing of HVDC systems,” CSEE J. Power Energy Syst., vol. 3, no. 2, pp. 125–130, 2017, doi: 10.17775/cseejpes.2017.0016.

C. A. Amado López, “Simulación Real Time de un Sistema HVDC-VSC Multiterminal,” Universidad de los Andes, 2014.

B. Bruned, S. Dennetière, J. Michel, M. Schudel, J. Mahseredjian, and N. Bracikowski, “Compensation method for parallel real-time EMT studies✰,” Electr. Power Syst. Res., vol. 198, no. November 2021, 2021, doi: 10.1016/j.epsr.2021.107341.

S. Zhang, B. Liu, S. Zheng, Y. Ma, F. Wang, and L. M. Tolbert, “Development of a Converter-Based Transmission Line Emulator with Three-Phase Short-Circuit Fault Emulation Capability,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10215–10228, 2018, doi: 10.1109/TPEL.2018.2805835.

Y. S. Borovikov, A. S. Gusev, A. O. Sulaymanov, and R. A. Ufa, “Hybrid real-time simulator of power system for advanced simulation of the FACTS and HVDC system based on voltage source converter,” 2014 2nd Int. Conf. Syst. Informatics, ICSAI 2014, pp. 148–152, 2015, doi: 10.1109/ICSAI.2014.7009276.

P. Dong et al., “Real time simulation on the second channel from xinjiang to northwest power network with multi facts,” Int. Conf. Renew. Power Gener. (RPG 2015), vol. 2015, 2015, doi: 10.1049/cp.2015.0351.

A. Sharma, S. C. Srivastava, and S. Chakrabarti, “Testing and Validation of Power System Dynamic State Estimators Using Real Time Digital Simulator (RTDS),” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2338–2347, 2016, doi: 10.1109/TPWRS.2015.2453482.

Y. S. Borovikov, A. S. Gusev, and R. A. Ufa, “Advanced Simulation of the Power Electronic Converters of VSC FACTS and HVDC in Hybrid Real Time Simulators of Power System,” Appl. Mech. Mater., vol. 698, pp. 749–754, 2014, doi: 10.4028/www.scientific.net/amm.698.749.

I. Etxeberria-Otadui, V. Manzo, S. Bacha, and F. Baltès, “Generalized average modelling of FACTS for real time simulation in ARENE,” IEEE 2002 28th Annu. Conf. Ind. Electron. Soc., vol. 2, pp. 864–869, 2002, doi: 10.1109/IECON.2002.1185385.

G. Koundal and S. L. Shimi, “Recent Trends on Real Time Simulation of FACTS: A Review,” 2018 Int. Conf. Comput. Charact. Tech. Eng. Sci. CCTES 2018, pp. 230–235, 2018, doi: 10.1109/CCTES.2018.8674160.

C. Dufour and J. Belanger, “On the use of real-time simulation technology in smart grid research and development,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3963–3970, 2014, doi: 10.1109/TIA.2014.2315507.

F. Guo et al., “Comprehensive real-time simulation of the smart grid,” IEEE Trans. Ind. Appl., vol. 49, no. 2, pp. 899–908, 2013, doi: 10.1109/TIA.2013.2240642.

D. Anderson, Chuanlin Zhao, C. Hauser, V. Venkatasubramanian, D. Bakken, and A. Bose, “Real-Time Simulation for Smart Grid Control and Communications Design,” IEEE Power Energy Mag., vol. 10, no. 1, pp. 49–57, 2011, doi: 10.1109/mpe.2011.943205.

Y. Borovikov, A. Prokhorov, and M. Andreev, “Application of Hybrid Real Time Simulator for solution of Smart Grid tasks on the example of Elgaugol energy cluster pilot project,” Proc. - 2012 7th Int. Forum Strateg. Technol. IFOST 2012, 2012, doi: 10.1109/IFOST.2012.6357822.

F. Guo et al., “Real time simulation for the study on smart grid,” IEEE Energy Convers. Congr. Expo. Energy Convers. Innov. a Clean Energy Futur. ECCE 2011, Proc., pp. 1013–1018, 2011, doi: 10.1109/ECCE.2011.6063883.

Nzimako Onyinyechi and Athula Rajapakse, “Real Time Simulation of a Microgrid with Distributed Energy Resources,” 2016 Int. Conf. Cogener. Small Power Plants Dist. Energy, 2016, doi: 10.1109/COGEN.2016.7728945.

E. Kotsakis, G. Fulli, and M. Masera, “Smart grid interoperability lab at the Joint Research Centre ( JRC ) of the European Commission,” AEIT Int. Annu. Conf., 2016, doi: 10.23919/AEIT.2016.7892769.

M. Manbachi et al., “Real-Time Co-Simulation Platform for Smart Grid Volt-VAR Optimization Using IEC 61850,” IEEE Trans. Ind. Informatics, vol. 12, no. 4, pp. 1392–1402, 2016, doi: 10.1109/TII.2016.2569586.

M. Brenna et al., “Real time simulation of smart grids for interface protection test and analysis,” ICHQP 2010 - 14th Int. Conf. Harmon. Qual. Power, 2010, doi: 10.1109/ICHQP.2010.5625444.

X. Feng, T. Yan, A. Zhang, H. Zhang, H. Liu, and X. Wei, “A Matlab-based digital-physical hybrid real-time simulation platform for power system,” 2018 Chinese Control Decis. Conf., pp. 4253–4258, 2018, doi: 10.1109/CCDC.2018.8407863.

X. Meng, K. Lin, A. Model, and P. Cell, “Research on photovoltaic power system of microgrid based on real-time simulation,” 2017 IEEE Conf. Energy Internet Energy Syst. Integr., 2017, doi: 10.1109/EI2.2017.8245676.

D. F. Gómez Saza, “Implementación de co-simulación de un sistema de distribución de MT/BT en plataforma de simulación en tiempo real,” Universidad de Los Andes, 2016.

J. G. Villareal Montoya, “Estudio de calidad de potencia en una micro red electrica integrada a un sistema de distribución local haciendo uso de simulación en tiempo real,” Universidad del Valle, 2019.

J. G. Villarreal-Montoya, E. Gómez-Luna, and E. Marlés-Sáenz, “Power quality assessment of the interconnection of a microgrid to a local distribution system using real-time simulation,” DYNA, vol. 87, no. 213, pp. 28–33, 2020, doi: 10.15446/dyna.v87n213.81686.

A. M. Bouzid, P. Sicard, J. N. Paquin, and A. Yamane, “A robust control strategy for parallel-connected distributed generation using real-time simulation,” IEEE 7th Int. Symp. Power Electron. Distrib. Gener. Syst. PEDG 2016, 2016, doi: 10.1109/PEDG.2016.7527055.

H. Fakham, F. Colas, and X. Guillaud, “Real-time simulation of multi-agent system for decentralized voltage regulation in distribution network,” IEEE Power Energy Soc. Gen. Meet., 2011, doi: 10.1109/PES.2011.6039676.

R. K. Varma, E. M. Siavashi, B. Das, and V. Sharma, “Real-time digital simulation of a PV solar system as STATCOM (PV-STATCOM) for voltage regulation and power factor correction,” IEEE Electr. Power Energy Conf., pp. 157–163, 2012, doi: 10.1109/EPEC.2012.6474942.

B. L. Schenkman, D. G. Wilson, R. D. Robinett, and K. Kukolich, “PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario,” SPEEDAM 2010 - Int. Symp. Power Electron. Electr. Drives, Autom. Motion, pp. 154–157, 2010, doi: 10.1109/SPEEDAM.2010.5542249.

S. Faddel, A. T. Al-Awami, and M. A. Abido, “Real time digital simulation of voltage-based controller for electric vehicle charging,” Clemson Univ. Power Syst. Conf. PSC 2016, 2016, doi: 10.1109/PSC.2016.7462863.

L. Bao, L. Fan, and Z. Miao, “Real-Time Simulation of Electric Vehicle Battery Charging Systems,” 2018 North Am. Power Symp. NAPS 2018, 2018, doi: 10.1109/NAPS.2018.8600543.

H. Bai, H. Luo, C. Liu, D. Paire, and F. Gao, “Real-Time Modeling and Simulation of Electric Vehicle Battery Charger on FPGA,” IEEE Int. Symp. Ind. Electron., pp. 1536–1541, 2019, doi: 10.1109/ISIE.2019.8781109.

R. O. Nemeș, S. M. Ciornei, M. Ruba, and C. Marțis, “Real-time simulation of scaled propulsion unit for light electric vehicles,” 2018 ELEKTRO, 2018, doi: 10.1109/ELEKTRO.2018.8398345.

S. Vavilapalli, U. Subramaniam, S. Padmanaban, and V. K. Ramachandaramurthy, “Design and real-time simulation of an AC voltage regulator based battery charger for large-scale PV-grid energy storage systems,” IEEE Access, vol. 5, pp. 25158–25170, 2017, doi: 10.1109/ACCESS.2017.2768438.

D. G. Fernández Vargas, “Modelo de simulación en tiempo real (OPAL-RT) de un sistema de distribución que presente conexión y desconexión de vehículos eléctricos.,” Universidad de Los Andes, Bogota, 2014.

M. Bounabi, M. S. Ait-Cheikh, C. Larbes, K. Kaced, and Z. E. Dahmane, “Hardware-in-the-loop FPGA-based real-time simulation of cascaded H-bridge multilevel inverter for grid interactive photovoltaic power plant,” 2017 IEEE Manchester PowerTech, Powertech 2017, 2017, doi: 10.1109/PTC.2017.7981232.

S. Jena, G. Panda, and R. Peesapati, “Real-time analysis and simulation of multi-string grid connected photovoltaic inverter using FPGA,” 2016 IEEE 6th Int. Conf. Power Syst. ICPS 2016, 2016, doi: 10.1109/ICPES.2016.7584068.

R. Darbali-Zamora, A. Summers, J. Hernandez-Alvidrez, J. E. Quiroz, J. Johnson, and E. I. Ortiz-Rivera, “Exponential Phase-Locked Loop Photovoltaic Model for PHIL Applications,” 2018 IEEE ANDESCON, 2018, doi: 10.1109/ANDESCON.2018.8564592.

Z. ; Taylor, H. Akhavan-Hejazi, and H. Mohsenian-Rad, “Power hardware-in-loop simulation of grid-connected battery systems with reactive power control capability,” 2017 North Am. Power Symp., 2017, doi: 10.1109/NAPS.2017.8107413.

M. D. Trujillo Riaño, “Comprobación del funcionamiento mediante técnica ‘hardware in the loop’ de conversores DC-DC tipo : Buck, Boost y Buck-Boost,” Universidad de Los Andes, 2014.

X. Zheng, C. Julien, H. Chen, R. Podorozhny, and F. Cassez, “Real-time simulation support for runtime verification of cyber-physical systems,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 4, 2017, doi: 10.1145/3063382.

M. H. Amini, K. G. Boroojeni, T. Dragicevic, A. Nejadpak, S. S. Iyengar, and F. Blaabjerg, “A comprehensive cloud-based real-time simulation framework for oblivious power routing in clusters of DC microgrids,” 2017 IEEE 2nd Int. Conf. Direct Curr. Microgrids, ICDCM 2017, pp. 270–273, 2017, doi: 10.1109/ICDCM.2017.8001055.

E. Franco Manrique, Rafael; Gómez Luna, Eduardo; Franco Mejia, “Sistema de Monitoreo de una Microred Aislada Usando ETAP Real Time,” Rev. CIDET, vol. 16, no. 16, pp. 1–8, 2017, [Online]. Available: http://revista.cidet.org.co/.

O. Abrishambaf, L. Gomes, P. Faria, J. L. Afonso, and Z. Vale, “Real-time simulation of renewable energy transactions in microgrid context using real hardware resources,” Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., 2016, doi: 10.1109/TDC.2016.7520009.

J. N. Paquin et al., “A modern and open real-time digital simulator of all-electric ships with a multi-platform co-simulation approach,” IEEE Electr. Sh. Technol. Symp. ESTS 2009, pp. 28–35, 2009, doi: 10.1109/ESTS.2009.4906490.

H. Mustafa, K. Kredo, R. Crosbie, R. Bednar, and Z. Alavi, “Real-Time FPGA Simulation of Electric Ship Power System Using High-Level Synthesis,” 2019 IEEE Electr. Sh. Technol. Symp. ESTS 2019, pp. 377–381, 2019, doi: 10.1109/ESTS.2019.8847870.

C. Ogilvie et al., “Modeling Communication Networks in a Real-Time Simulation Environment for Evaluating Controls of Shipboard Power Systems,” 2020 IEEE CyberPELS, CyberPELS 2020, pp. 1–7, 2020, doi: 10.1109/CyberPELS49534.2020.9311540.

C. Dufour, C. Andrade, and J. Bélanger, “Real-Time Simulation Technologies in Education : a Link to Modern Engineering Methods and Practices,” Proc. 11th Int. Conf. Eng. Technol. Educ., no. May 2014, pp. 114–118, 2010.

D. Wang, S. Yang, L. Wang, and W. Liu, “Hardware-in-the-loop simulation for aircraft electric power system,” 2016 Int. Conf. Electr. Syst. Aircraft, Railw. Sh. Propuls. Road Veh. Int. Transp. Electrif. Conf. ESARS-ITEC 2016, pp. 1–5, 2016, doi: 10.1109/ESARS-ITEC.2016.7841331.

D. Wang, S. Yang, L. Wang, and W. Liu, “Bus power control unit development and hardware-in-the-loop evaluation of commercial aircraft electric power system,” 2016 IEEE 2nd Annu. South. Power Electron. Conf. SPEC 2016, pp. 1–5, 2016, doi: 10.1109/SPEC.2016.7845999.

A. Griffo, D. Drury, and D. Salt, “Hardware in the loop based synchronous generator emulation test rig for more electric aircraft power systems,” IET Conf. Publ., vol. 2012, no. 592 CP, 2012, doi: 10.1049/cp.2012.0248.

Q. Dufour, A. Yamane, J. N. Paquin, and K. Al-Haddad, “A Modular Real Time Simulation Solution for More Electric Aircraft Complex Architecture,” IECON Proc. (Industrial Electron. Conf., vol. 2020-Octob, pp. 3717–3721, 2020, doi: 10.1109/IECON43393.2020.9254926.

P. Le-Huy, S. Guérette, L. A. Dessaint, and H. Le-Huy, “Real-time simulation of power electronics in power systems usingan FPGA,” Can. Conf. Electr. Comput. Eng., 2006, doi: 10.1109/CCECE.2006.277356.

L. A. Gregoire, H. F. Blanchette, J. Belanger, and K. Al-Haddad, “Real-time simulation-based multisolver decoupling technique for complex power electronics circuits,” IEEE Trans. Power Deliv., vol. 31, no. 5, 2016, doi: 10.1109/TPWRD.2016.2565512.

M. Milton and A. Benigni, “Latency Insertion Method Based Real-Time Simulation of Power Electronic Systems,” IEEE Trans. Power Electron., vol. 33, no. 8, 2018, doi: 10.1109/TPEL.2017.2757449.

G. Lauss and K. Strunz, “Accurate and Stable Hardware-in-the-Loop (HIL) Real-time Simulation of Integrated Power Electronics and Power Systems,” IEEE POWER Electron. Regul., vol. 36, no. 9, 2020, doi: 10.1109/TPEL.2020.3040071.

J. N. González Guatibonza, “Diseño e implementación de un filtro activo de potencia en derivación para eliminación de contenido armónico en la red eléctrica utilizando la plataforma OPAL-RT,” Universidad de los Andes, 2015.

D. Tormo, R. Vidal-Albalate, L. Idkhajine, E. Monmasson, and R. Blasco-Gimenez, “Study of System-on-Chip devices to implement embedded real-time simulators of modular multi-level converters using high-level synthesis tools,” Proc. IEEE Int. Conf. Ind. Technol., pp. 1447–1452, 2018, doi: 10.1109/ICIT.2018.8352393.

Y. Wei, D. Shu, X. Xie, V. Dinavahi, and Z. Yan, “Real-Time Simulation of Hybrid Modular Multilevel Converters Using Shifted Phasor Models,” IEEE Access, vol. 7, pp. 2376–2386, 2019, doi: 10.1109/ACCESS.2018.2884506.

J. Zeng et al., “A DC component elimination control strategy for the interface system of digital-physical hybrid real-Time simulation,” Proc. IECON 2017 - 43rd Annu. Conf. IEEE Ind. Electron. Soc., pp. 515–520, 2017, doi: 10.1109/IECON.2017.8216091.

N. Achury Beltrán, “Simulación y control de sistemas de potencia mediante el monitoreo del SPI en Real-Time con el uso de sincrofasores,” Universidad de Los Andes, 2014.

M. A. Ortiz Padilla, “Simulación y Control de Motores de Reluctancia Conmutada,” Universidad de Los Andes, 2013.

C. A. Sarmiento López, “Simulación y control en tiempo real de motores de Reluctancia conmutada,” Universidad de Los Andes, 2015.

M. A. Ortiz Padilla, “Control de motores de reluctancia conmutada para propulsión en vehículos eléctricos,” Universidad de Los Andes, 2017.

E. G. Luna, R. F. Manrique, and E. L. Palacios Bocanegra, “Monitoring and Control System Using ETAP Real-Time on Generation Plant Emulation Using OPAL-RT,” 2018 IEEE ANDESCON, ANDESCON 2018 - Conf. Proc., pp. 0–5, 2018, doi: 10.1109/ANDESCON.2018.8564653.

F. Alvarez-Gonzalez and A. Griffo, “High-fidelity modelling of permanent magnet synchronous motors for real-time hardware-in-the-loop simulation,” 8th IET Int. Conf. Power Electron. Mach. Drives (PEMD 2016), pp. 1–6, 2016, doi: 10.1049/cp.2016.0308.

R. Iracheta and O. Ramos-Leaños, “Improving computational efficiency of FD line model for real-time simulation of EMTs,” North Am. Power Symp. 2010, NAPS 2010, 2010, doi: 10.1109/NAPS.2010.5618953.

J. M. Vahid, L. F. Pak, and V. Dinavahi, “Real-time simulation of grid-connected wind farms using physical aggregation,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3010–3021, 2010, doi: 10.1109/TIE.2009.2037644.

S. Ebrahimi, N. Amiri, and J. Jatskevich, “Interfacing of Parametric Average-Value Models of LCR Systems in Fixed-Time-Step Real-Time EMT Simulations,” IEEE Trans. Energy Convers., vol. 35, no. 4, pp. 1985–1988, 2020, doi: 10.1109/TEC.2020.3028266.

A. Hadizadeh, M. Hashemi, M. Labbaf, and M. Parniani, “A Matrix-Inversion Technique for FPGA-Based Real-Time EMT Simulation of Power Converters,” IEEE Trans. Ind. Electron., vol. 66, no. 2, 2019, doi: 10.1109/TIE.2018.2833058.

N. Panigrahy, K. S. Gopalakrishnan, T. Ilamparithi, and M. V. Kashinath, “Real-Time Phasor-EMT Hybrid Simulation for Modern Power Distribution Grids,” IEEE Int. Conf. Power Electron. Drives Energy Syst. PEDES 2016, 2016, doi: 10.1109/PEDES.2016.7914270.

V. Jalili-Marandi, J. Belanger, and F. J. Ayres, “Model-in-The-Loop real-time simulation in phasor domain,” IEEE Int. Symp. Ind. Electron., pp. 2280–2284, 2014, doi: 10.1109/ISIE.2014.6864973.

J. Xu, K. Wang, G. Li, W. Ji, X. Jiang, and H. Zhang, “System-level dynamic phasor models of hybrid AC/DC microgrids suitable for realtime simulation and small signal analysis,” IET Gener. Transm. Distrib., vol. 12, no. 15, pp. 3607–3617, 2018, doi: 10.1049/iet-gtd.2017.1319.

D. X. Morales, R. D. Medina, and Y. Besanger, “Proposal and requirements for a real-time hybrid simulator of the distribution network,” CHILECON 2015 - 2015 IEEE Chil. Conf. Electr. Electron. Eng. Inf. Commun. Technol. Proc. IEEE Chilecon 2015, pp. 591–596, 2016, doi: 10.1109/Chilecon.2015.7400438.

P. Le-Huy, J. Huang, F. Guay, and I. Kamwa, “Hybrid simulation and off-the-shelf hardware for efficient real-time simulation studies,” 6th IEEE Int. Energy Conf. ENERGYCon 2020, pp. 98–103, 2020, doi: 10.1109/ENERGYCon48941.2020.9236440.

R. Rink and R. Malkowski, “Real-Time hybrid model of a wind turbine with doubly fed induction generator,” 2019 IEEE 60th Annu. Int. Sci. Conf. Power Electr. Eng. Riga Tech. Univ. RTUCON 2019 - Proc., pp. 1–5, 2019, doi: 10.1109/RTUCON48111.2019.8982306.

M. O. Faruque, V. Dinavahi, M. Sloderbeck, and M. Steurer, “Geographically distributed thermo-electric co-simulation of all-electric ship,” IEEE Electr. Sh. Technol. Symp. ESTS 2009, pp. 36–43, 2009, doi: 10.1109/ESTS.2009.4906491.

C. Dufour and J. Bélanger, “Discrete time compensation of switching events for accurate real-time simulation of power systems,” IECON IEEE Ind. Electron. Conf., vol. 2, pp. 1533–1538, 2001, doi: 10.1109/iecon.2001.976020.

F. Tian, C. Yue, Z. Wu, and X. Zhou, “Realization of electromechanical transient and electromagnetic transient real time hybrid simulation in power system,” Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., pp. 1–6, 2005, doi: 10.1109/TDC.2005.1546932.

D. F. Aron Popp, Mathiieu Sarrazin, Herman Van der Auweraer, Birte, Ovidiu, Biro Karoly, and Claudia Martis, “Real-time co-simulation platform for electromechanical vehicle applications,” 9 Int. Symp. Adv. Top. Electr. th CAL Eng., pp. 240–243, 2015, doi: 10.1109/ATEE.2015.7133772.

P. Wei, Q. Zhou, J. K. Liu, C. G. Wang, and N. Y. Zhang, “Electromechanical-electromagnetic hybrid modelling of ±800kV Jinsu UHVDC based on real-time digital simulation device,” 12th IET Int. Conf. AC DC Power Transm. (ACDC 2016), 2016, doi: 10.1049/cp.2016.0464.

W. Li and X. Xiao, “Electromagnetic and electromechanical transient hybrid real-time simulation technology based on RTDS used in subsynchronous resonance research,” 2010 Int. Conf. Power Syst. Technol., 2010, doi: 10.1109/POWERCON.2010.5666393.

Z. Liu, G. Wang, C. Lin, Z. Wang, and J. Li, “A design of hardware-in-the-loop real-time simulation for large-scale complex electromechanical system,” CSAA/IET Int. Conf. Aircr. Util. Syst. (AUS 2018), 2018, doi: 10.1049/cp.2018.0284.

B. Kroposki et al., “Autonomous Energy Grids: Controlling the Future Grid With Large Amounts of Distributed Energy Resources,” IEEE Power Energy Mag., no. 6, pp. 37–46, 2020, doi: 10.1109/MPE.2020.3014540.

Published

2022-08-08

How to Cite

Gaitán Cubides, L. F., González Sánchez, J. W., & Giraldo Velazquez, L. A. (2022). A Review of Real Time Digital Simulations: Theory and Applications for the Energy Transition. IEEE Latin America Transactions, 20(10), 2295–2307. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/6885

Issue

Section

Electric Energy