Optimization of Reclosers Placement in Distribution Networks to Improve Service Quality Indices
Keywords:
Recloser, Mixed integer nonlinear programming (MINLP), Service quality indicators, SAIDI, SAIFI, Distribution systemAbstract
The fundamental goal of an electric utility is to provide the power supply in the most reliable and economical way. However, the components of a power distribution system are exposed to faults, or service outages, which in some cases may cause the disconnection of one or more customers of the distribution system. In order to reduce the duration of faults and improve service quality indices in power networks, utilities have installed protection devices, such as reclosers, in appropriate locations in the power distribution networks, due to its ability of coordination with other device and the radial characteristics of distribution system. In addition, the recloser can clear temporary faults and isolate failed feeders without interrupting the service of the whole circuit. This paper presents a methodology for optimization of reclosers placement in distribution networks. A mathematical model of Mixed Integer Nonlinear Programming (MINLP) is used, with the purpose to minimize the SAIDI or SAIFI quality indices. For the model, an objective function is defined, with its respective restrictions to obtain the appropriate locations. This objective function is run in the GAMS software to model and solve optimization problems. The effectiveness of the proposed approach is evaluated on a test system and in a conventional real distribution system.
Downloads
References
REFERENCIAS
R. Billinton and S. Jonnavithula, “Optimal switching device placement in radial distribution systems,” IEEE Trans. Power Deliv.,
vol. 11, no. 3, pp. 1646–1651, Jul. 1996, doi: 10.1109/61.517529.
“The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition,” IEEE Std 100-2000, pp. 1–1362, Dec. 2000, doi:
1109/IEEESTD.2000.322230.
S. Abdi, K. Afshar, S. Ahmadi, N. Bigdeli, and M. Abdi, “Optimal recloser and autosectionalizer allocation in distribution networks
using IPSO-Monte Carlo approach,” Int. J. Electr. Power Energy Syst., vol. 55, pp. 602–611, Feb. 2014, doi:
1016/j.ijepes.2013.10.012.
A. Elmitwally, E. Gouda, and S. Eladawy, “Restoring recloser-fuse coordination by optimal fault current limiters planning in DGintegrated distribution systems,” Int. J. Electr. Power Energy Syst., vol. 77, pp. 9–18, May 2016, doi: 10.1016/j.ijepes.2015.11.021.
B. K. Panigrahi, A. Abraham, and S. Das, Eds., Computational Intelligence in Power Engineering. Berlin, Germany: SpringerVerlag Berlin Heidelberg, 2010.
G. Levitin, S. Mazal-Tov, and D. Elmakis, “Optimal sectionalizer allocation in electric distribution systems by genetic algorithm,”
Electr. Power Syst. Res., vol. 31, no. 2, pp. 97–102, Nov. 1994, doi: 10.1016/0378-7796(94)90086-8.
N. Dehghani and R. Dashti, “Optimization of Recloser Placement to Improve Reliability by Genetic Algorithm,” Energy Power Eng., vol. 03, no. 04, pp. 508–512, 2011, doi: 10.4236/epe.2011.34061.
F. G. K. Guarda, G. Cardoso Junior, A. P. De Morais, U. H. Bezerra, and J. P. A. Vieira, “Hybrid Method for Protective Devices
Placement, Sizing and Coordination in Electric Distribution Systems,” IEEE Lat. Am. Trans., vol. 15, no. 2, pp. 257–262, Feb.
, doi: 10.1109/TLA.2017.7854620.
R. Billinton and S. Jonnavithula, “Optimal switching device placement in radial distribution systems,” IEEE Trans. Power Deliv.,
vol. 11, no. 3, pp. 1646–1651, Jul. 1996, doi: 10.1109/61.517529.
A. Moradi, M. Fotuhi-Firuzabad, and M. Rashidi-Nejad, “A reliability cost/worth approach to determine optimum switching
placement in distribution systems,” in Proceedings of the IEEE Power Engineering Society Transmission and Distribution
Conference, 2005, vol. 2005, pp. 1–5, doi: 10.1109/TDC.2005.1547169.
C. S. Chen, C. H. Lin, H. J. Chuang, C. S. Li, M. Y. Huang, and C. W. Huang, “Optimal placement of line switches for distribution
automation systems using immune algorithm,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1209–1217, Aug. 2006, doi: 10.1109/TPWRS.2006.876673.
L. S. De Assis, J. F. V. González, F. L. Usberti, C. Lyra, C. Cavellucci, and F. J. Von Zuben, “Switch allocation problems in
power distribution systems,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 246–253, Jan. 2015, doi: 10.1109/TPWRS.2014.2322811.
L. F. Grisales, O. D. Montoya, A. Grajales, R. A. Hincapie, and M. Granada, “Optimal Planning and Operation of Distribution Systems
Considering Distributed Energy Resources and Automatic Reclosers,” IEEE Lat. Am. Trans., vol. 16, no. 1, pp. 126–134, Jan.
, doi: 10.1109/TLA.2018.8291464.
A. Moradi and M. Fotuhi-Firuzabad, “Optimal switch placement in distribution systems using trinary particle swarm optimization
algorithm,” IEEE Trans. Power Deliv., vol. 23, no. 1, pp. 271–279, Jan. 2008, doi: 10.1109/TPWRD.2007.905428.
J. R. Bezerra, G. C. Barroso, R. P. Saraiva Leão, and R. F. Sampaio, “Multiobjective Optimization Algorithm for Switch Placement in
Radial Power Distribution Networks,” IEEE Trans. Power Deliv., vol. 30, no. 2, pp. 545–552, Apr. 2015, doi:
1109/TPWRD.2014.2317173.
F. G. K. Guarda, G. C. Junior, and C. D. L. Da Silva, “Fault current limiter placement to reduce recloser-fuse miscoordination in electric distribution systems with distributed generation using multiobjective particle swarm optimization,” IEEE Lat. Am. Trans., vol. 16, no. 7, pp. 1914–1920, Jul. 2018, doi: 10.1109/TLA.2018.8447357.
H. Falaghi, M. R. Haghifam, and C. Singh, “Ant colony optimizationbased method for placement of sectionalizing switches in distribution networks using a fuzzy multiobjective approach,” IEEE Trans. Power Deliv., vol. 24, no. 1, pp. 268–276, 2009, doi:
1109/TPWRD.2008.2005656.
W. Tippachon and D. Rerkpreedapong, “Multiobjective optimal placement of switches and protective devices in electric power
distribution systems using ant colony optimization,” Electr. Power Syst. Res., vol. 79, no. 7, pp. 1171–1178, Jul. 2009, doi:
1016/j.epsr.2009.02.006.
A. Abiri-Jahromi, M. Fotuhi-Firuzabad, M. Parvania, and M. Mosleh, “Optimized sectionalizing switch placement strategy in distribution systems,” IEEE Trans. Power Deliv., vol. 27, no. 1, pp. 362–370, Jan. 2012, doi: 10.1109/TPWRD.2011.2171060.
O. de Antonio Suárez, “Una aproximación a la heuristica y metaheuristicas,” Univ. Antonio Nariño, vol. 1, no. 2, p. 8, Mar. 2011,
Accessed: May 10, 2021. [Online]. Available: http://revistas.uan.edu.co/index.php/ingeuan/article/view/217.
F. Soudi and K. Tomsovic, “Optimized distribution protection using binary programming,” IEEE Trans. Power Deliv., vol. 13, no. 1, pp. 218–224, 1998, doi: 10.1109/61.660881.
F. Soudi and K. Tomsovic, “Optimal trade-offs in distribution protection design,” IEEE Trans. Power Deliv., vol. 16, no. 2, pp. 292–
, Apr. 2001, doi: 10.1109/61.915498.
L. G. W. Da Silva, R. A. F. Pereira, and J. R. S. Mantovani, “Allocation of protective devices in distribution circuits using
nonlinear programming models and genetic algorithms,” Electr. Power Syst. Res., vol. 69, no. 1, pp. 77–84, Apr. 2004, doi:
1016/j.epsr.2003.08.010.
J. M. Sohn, S. R. Nam, and J. K. Park, “Value-based radial distribution system reliability optimization,” IEEE Trans. Power
Syst., vol. 21, no. 2, pp. 941–947, May 2006, doi: 10.1109/TPWRS.2005.860927.
E. Zambon, D. Z. Bossois, B. B. Garcia, and E. F. Azeredo, “A novel nonlinear programming model for distribution protection
optimization,” IEEE Trans. Power Deliv., vol. 24, no. 4, pp. 1951– 1958, 2009, doi: 10.1109/TPWRD.2008.2002679.
G. D. Ferreira and A. S. Bretas, “A nonlinear binary programming model for electric distribution systems reliability optimization,” Int. J. Electr. Power Energy Syst., vol. 43, no. 1, pp. 384–392, Dec. 2012, doi: 10.1016/j.ijepes.2012.05.070.
Comisión de Regulación de Energía y Gas, “Resolución No. 015 de 2018,” Ministerio de Minas y Energía, 2018.
pdf (accessed Nov. 10, 2020).
“IEEE Guide for Electric Power Distribution Reliability Indices,” IEEE Std 1366-2012 (Revision IEEE Std 1366-2003), pp. 1–43, May
, doi: 10.1109/IEEESTD.2012.6209381.
“BARON - Branch-And-Reduce Optimization Navigator.” https://www.gams.com/latest/docs/S_BARON.html (accessed Dec.
, 2020).
R. E. Brown, Electric power distribution reliability, second edition. Boca Raton, FL: CRC Press Inc, 2009