Optimization of Reclosers Placement in Distribution Networks to Improve Service Quality Indices



Recloser, Mixed integer nonlinear programming (MINLP), Service quality indicators, SAIDI, SAIFI, Distribution system


The fundamental goal of an electric utility is to provide the power supply in the most reliable and economical way. However, the components of a power distribution system are exposed to faults, or service outages, which in some cases may cause the disconnection of one or more customers of the distribution system. In order to reduce the duration of faults and improve service quality indices in power networks, utilities have installed protection devices, such as reclosers, in appropriate locations in the power distribution networks, due to its ability of coordination with other device and the radial characteristics of distribution system. In addition, the recloser can clear temporary faults and isolate failed feeders without interrupting the service of the whole circuit. This paper presents a methodology for optimization of reclosers placement in distribution networks. A mathematical model of Mixed Integer Nonlinear Programming (MINLP) is used, with the purpose to minimize the SAIDI or SAIFI quality indices. For the model, an objective function is defined, with its respective restrictions to obtain the appropriate locations. This objective function is run in the GAMS software to model and solve optimization problems. The effectiveness of the proposed approach is evaluated on a test system and in a conventional real distribution system.


Download data is not yet available.

Author Biographies

Gustavo Adolfo Gastelbondo Mercado, Empresas Públicas de Medellín (EPM)

Gustavo A. Gastelbondo received his BEE from Universidad de Antioquia, Medellín – Colombia, in 2014. In 2021 he received his M.S. degree in Engineering from Universidad Pontificia Bolivariana, Medellin – Colombia, and he is working at Empresas Públicas de Medellín E.S.P (EPM). His research interests include distribution system planning, protective devices and protection coordination.

Jorge Wilson Gonzalez Sanchez, Universidad Pontificia Bolivariana (UPB)

Jorge W. González. Electrical Eng., MSc. and PhD. professor at UPB Colombia in Electrical Eng. Faculty. Formerly, he was with HMV Consulting, Siemens PTD Germany and for Utility EPM. He was researcher at Univ. Kempten and Power Systems Inst. Erlangen Univ. Germany. His research activities include protective relaying, optimization, power systems, HVDC, FACTS, substations and renewable energies



R. Billinton and S. Jonnavithula, “Optimal switching device placement in radial distribution systems,” IEEE Trans. Power Deliv.,

vol. 11, no. 3, pp. 1646–1651, Jul. 1996, doi: 10.1109/61.517529.

“The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition,” IEEE Std 100-2000, pp. 1–1362, Dec. 2000, doi:


S. Abdi, K. Afshar, S. Ahmadi, N. Bigdeli, and M. Abdi, “Optimal recloser and autosectionalizer allocation in distribution networks

using IPSO-Monte Carlo approach,” Int. J. Electr. Power Energy Syst., vol. 55, pp. 602–611, Feb. 2014, doi:


A. Elmitwally, E. Gouda, and S. Eladawy, “Restoring recloser-fuse coordination by optimal fault current limiters planning in DGintegrated distribution systems,” Int. J. Electr. Power Energy Syst., vol. 77, pp. 9–18, May 2016, doi: 10.1016/j.ijepes.2015.11.021.

B. K. Panigrahi, A. Abraham, and S. Das, Eds., Computational Intelligence in Power Engineering. Berlin, Germany: SpringerVerlag Berlin Heidelberg, 2010.

G. Levitin, S. Mazal-Tov, and D. Elmakis, “Optimal sectionalizer allocation in electric distribution systems by genetic algorithm,”

Electr. Power Syst. Res., vol. 31, no. 2, pp. 97–102, Nov. 1994, doi: 10.1016/0378-7796(94)90086-8.

N. Dehghani and R. Dashti, “Optimization of Recloser Placement to Improve Reliability by Genetic Algorithm,” Energy Power Eng., vol. 03, no. 04, pp. 508–512, 2011, doi: 10.4236/epe.2011.34061.

F. G. K. Guarda, G. Cardoso Junior, A. P. De Morais, U. H. Bezerra, and J. P. A. Vieira, “Hybrid Method for Protective Devices

Placement, Sizing and Coordination in Electric Distribution Systems,” IEEE Lat. Am. Trans., vol. 15, no. 2, pp. 257–262, Feb.

, doi: 10.1109/TLA.2017.7854620.

R. Billinton and S. Jonnavithula, “Optimal switching device placement in radial distribution systems,” IEEE Trans. Power Deliv.,

vol. 11, no. 3, pp. 1646–1651, Jul. 1996, doi: 10.1109/61.517529.

A. Moradi, M. Fotuhi-Firuzabad, and M. Rashidi-Nejad, “A reliability cost/worth approach to determine optimum switching

placement in distribution systems,” in Proceedings of the IEEE Power Engineering Society Transmission and Distribution

Conference, 2005, vol. 2005, pp. 1–5, doi: 10.1109/TDC.2005.1547169.

C. S. Chen, C. H. Lin, H. J. Chuang, C. S. Li, M. Y. Huang, and C. W. Huang, “Optimal placement of line switches for distribution

automation systems using immune algorithm,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1209–1217, Aug. 2006, doi: 10.1109/TPWRS.2006.876673.

L. S. De Assis, J. F. V. González, F. L. Usberti, C. Lyra, C. Cavellucci, and F. J. Von Zuben, “Switch allocation problems in

power distribution systems,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 246–253, Jan. 2015, doi: 10.1109/TPWRS.2014.2322811.

L. F. Grisales, O. D. Montoya, A. Grajales, R. A. Hincapie, and M. Granada, “Optimal Planning and Operation of Distribution Systems

Considering Distributed Energy Resources and Automatic Reclosers,” IEEE Lat. Am. Trans., vol. 16, no. 1, pp. 126–134, Jan.

, doi: 10.1109/TLA.2018.8291464.

A. Moradi and M. Fotuhi-Firuzabad, “Optimal switch placement in distribution systems using trinary particle swarm optimization

algorithm,” IEEE Trans. Power Deliv., vol. 23, no. 1, pp. 271–279, Jan. 2008, doi: 10.1109/TPWRD.2007.905428.

J. R. Bezerra, G. C. Barroso, R. P. Saraiva Leão, and R. F. Sampaio, “Multiobjective Optimization Algorithm for Switch Placement in

Radial Power Distribution Networks,” IEEE Trans. Power Deliv., vol. 30, no. 2, pp. 545–552, Apr. 2015, doi:


F. G. K. Guarda, G. C. Junior, and C. D. L. Da Silva, “Fault current limiter placement to reduce recloser-fuse miscoordination in electric distribution systems with distributed generation using multiobjective particle swarm optimization,” IEEE Lat. Am. Trans., vol. 16, no. 7, pp. 1914–1920, Jul. 2018, doi: 10.1109/TLA.2018.8447357.

H. Falaghi, M. R. Haghifam, and C. Singh, “Ant colony optimizationbased method for placement of sectionalizing switches in distribution networks using a fuzzy multiobjective approach,” IEEE Trans. Power Deliv., vol. 24, no. 1, pp. 268–276, 2009, doi:


W. Tippachon and D. Rerkpreedapong, “Multiobjective optimal placement of switches and protective devices in electric power

distribution systems using ant colony optimization,” Electr. Power Syst. Res., vol. 79, no. 7, pp. 1171–1178, Jul. 2009, doi:


A. Abiri-Jahromi, M. Fotuhi-Firuzabad, M. Parvania, and M. Mosleh, “Optimized sectionalizing switch placement strategy in distribution systems,” IEEE Trans. Power Deliv., vol. 27, no. 1, pp. 362–370, Jan. 2012, doi: 10.1109/TPWRD.2011.2171060.

O. de Antonio Suárez, “Una aproximación a la heuristica y metaheuristicas,” Univ. Antonio Nariño, vol. 1, no. 2, p. 8, Mar. 2011,

Accessed: May 10, 2021. [Online]. Available: http://revistas.uan.edu.co/index.php/ingeuan/article/view/217.

F. Soudi and K. Tomsovic, “Optimized distribution protection using binary programming,” IEEE Trans. Power Deliv., vol. 13, no. 1, pp. 218–224, 1998, doi: 10.1109/61.660881.

F. Soudi and K. Tomsovic, “Optimal trade-offs in distribution protection design,” IEEE Trans. Power Deliv., vol. 16, no. 2, pp. 292–

, Apr. 2001, doi: 10.1109/61.915498.

L. G. W. Da Silva, R. A. F. Pereira, and J. R. S. Mantovani, “Allocation of protective devices in distribution circuits using

nonlinear programming models and genetic algorithms,” Electr. Power Syst. Res., vol. 69, no. 1, pp. 77–84, Apr. 2004, doi:


J. M. Sohn, S. R. Nam, and J. K. Park, “Value-based radial distribution system reliability optimization,” IEEE Trans. Power

Syst., vol. 21, no. 2, pp. 941–947, May 2006, doi: 10.1109/TPWRS.2005.860927.

E. Zambon, D. Z. Bossois, B. B. Garcia, and E. F. Azeredo, “A novel nonlinear programming model for distribution protection

optimization,” IEEE Trans. Power Deliv., vol. 24, no. 4, pp. 1951– 1958, 2009, doi: 10.1109/TPWRD.2008.2002679.

G. D. Ferreira and A. S. Bretas, “A nonlinear binary programming model for electric distribution systems reliability optimization,” Int. J. Electr. Power Energy Syst., vol. 43, no. 1, pp. 384–392, Dec. 2012, doi: 10.1016/j.ijepes.2012.05.070.

Comisión de Regulación de Energía y Gas, “Resolución No. 015 de 2018,” Ministerio de Minas y Energía, 2018.


pdf (accessed Nov. 10, 2020).

“IEEE Guide for Electric Power Distribution Reliability Indices,” IEEE Std 1366-2012 (Revision IEEE Std 1366-2003), pp. 1–43, May

, doi: 10.1109/IEEESTD.2012.6209381.

“BARON - Branch-And-Reduce Optimization Navigator.” https://www.gams.com/latest/docs/S_BARON.html (accessed Dec.

, 2020).

R. E. Brown, Electric power distribution reliability, second edition. Boca Raton, FL: CRC Press Inc, 2009



How to Cite

Gastelbondo Mercado, G. A., & Gonzalez Sanchez, J. W. (2021). Optimization of Reclosers Placement in Distribution Networks to Improve Service Quality Indices . IEEE Latin America Transactions, 20(2), 241–249. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/5535

Most read articles by the same author(s)