Polarization in the forest bioelectricity generation in Brazil
Keywords:
Bioenergy, Forest biomass, Bipolarization, Multigroup polarizationAbstract
The expansion of forest bioelectricity is associated with the insertion of the bioeconomy, providing efficiency gains and improving the use of resources. This paper analyzed the polarization of forest bioelectricity generation in Brazil, between 2000 and 2019. The data used were from the granting of forest biomass thermoelectric plants obtained from the National Electric Energy Agency (ANEEL). To measure the polarization, the Lorenz curve, the polarization measures of Foster and Wolfson (PFW) and Esteban and Ray (PER). were used. The main results showed that the use of Brazilian forest bioelectricity increased from 562.90 MW and 11 thermoelectric plants in 2000 to 3,532.61 MW and 115 thermoelectric plants in 2019. For the regional level, there was a decrease for PFW and PER, being the greater polarization in the period from 2002 to 2008, where it highlighted the Southeast region as the main player. There was an increase in state polarization (PFWavg. = 0.3002 and PER(1.6)avg. = 0.1530), as a result of the granting of large black liquor plants in the states of Mato Grosso do Sul and Paraná, as of 2013. For level 2 sources, the domain of black liquor and forest residues was registered over the national supply, leading to the existence of hubs (PFWavg. = 0.5349 and PER(1.6)avg. = 0.1870). The polarization proved to be relevant to the object of study, being its unprecedented application for energy analysis in Brazil.
Downloads
References
R. Lundmark, D. Athanassiadis, and E. Wetterlund, “Supply assessment of forest biomass - A bottom-up approach for Sweden,” Biomass and Bioenergy, vol. 75, pp. 213–226, 2015, doi: 10.1016/j.biombioe.2015.02.022.
J. de Castro Reis, R. dos Santos Constant, L. Angulo Meza, and J. C. Soares de Mello, “Multiobjective Linear Programming to Determine the Most Suitable Electrical Energy Matrix for Countries: a Case Study at Brazil,” IEEE Lat. Am. Trans., vol. 17, no. 03, pp. 426–433, Mar. 2019, doi: 10.1109/TLA.2019.8863313.
M. Tedesco, F. J. Simioni, S. Sehnem, J. F. Soares, and L. M. Coelho Junior, “Assessment of the circular economy in the Brazilian planted tree sector using the ReSOLVE framework,” Sustain. Prod. Consum., vol. 31, pp. 397–406, May 2022.
F. J. Simioni, G. L. Jarenkow, K. F. da Silva, R. C. Brutti, and L. M. Coelho Junior, “Eco-efficiency in the transformation of forest biomass residues in electrical energy,” Clean Technol. Environ. Policy, vol. 23, no. 5, pp. 1443–1456, Jul. 2021.
Indústria brasileira de árvores, “Relatório 2019,” 2019. [Online]. Available: https://www.iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf.
Food and Agriculture Organization of the United Nations - FAO, “FAOSTAT,” Forestry Production and Trade, 2020. http://www.fao.org/faostat/en/#data/FO.
L. M. Coelho Junior, E. P. Santos Junior, A. M. M. Nunes, A. N. de Souza, L. A. C. Borges, and F. J. Simioni, “Concentration and Clusters of Black Liquor Thermoelectric Plants in Brazil,” IEEE Lat. Am. Trans., vol. 19, no. 12, pp. 2122–2129, Dec. 2021, doi: 10.1109/TLA.2021.9480155.
Serviço Florestal Brasileiro, “Produção Florestal,” Sistema Nacional de Informações Florestais, 2021.
Agência Nacional de Energia Elétrica, “Sistema de Informações de Geração da ANEEL,” 2020. http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/OperacaoCapacidadeBrasil.cfm (accessed Sep. 05, 2018).
E. P. Santos Júnior, A. M. M. Nunes, M. Nunes, Y. R. V. Araújo, K. L. C. Martins, and L. M. Coelho Junior, “Concentração da oferta de bioeletricidade no Brasil,” Rev. Bras. Planej. e Desenvolv., vol. 10, no. 04, pp. 648–665, 2021.
E. P. Santos Júnior, M. V. B. da Silva, F. J. Simioni, P. Rotella Junior, R. S. C. Menezes, and L. M. Coelho Junior, “Location and concentration of the forest bioelectricity supply in Brazil: A space-time analysis,” Renew. Energy, vol. 199, pp. 710–719, Nov. 2022, doi: 10.1016/j.renene.2022.09.001.
S. Sacirovic, S. Ketin, and N. Vignjevic, “Eco-industrial zones in the context of sustainability development of urban areas,” Environ. Sci. Pollut. Res., vol. 26, no. 24, pp. 24346–24356, Aug. 2019, doi: 10.1007/s11356-018-1390-y.
U. F. Hernández, D. Jaeger, and J. I. Samperio, “Evaluating economic alternatives for wood energy supply based on stochastic simulation,” Sustain., vol. 10, no. 4, pp. 1–19, 2018, doi: 10.3390/su10041161.
L. M. Coelho Junior and E. P. Santos Júnior, “Space-Time Conglomerates Analysis of the Forest-Based Power Plants in Brazil (2000–2019),” Energies, vol. 15, no. 11, p. 4113, Jun. 2022, doi: 10.3390/en15114113.
J. A. Duro and E. Padilla, “Cross-Country Polarisation in CO2 Emissions Per Capita in the European Union: Changes and Explanatory Factors,” Environ. Resour. Econ., vol. 54, no. 4, pp. 571–591, Apr. 2013, doi: 10.1007/s10640-012-9607-x.
J.-M. Esteban and D. Ray, “On the Measurement of Polarization,” Econometrica, vol. 62, no. 4, p. 819, Jul. 1994, doi: 10.2307/2951734.
J. A. Duro, “The international distribution of energy intensities: Some synthetic results,” Energy Policy, vol. 83, pp. 257–266, Aug. 2015, doi: 10.1016/j.enpol.2015.03.022.
M. Molnar, “Income Polarization In Romania,” Rom. J. Econ. Forecast., vol. 14, no. 2, pp. 64–83, 2011.
C. D’ambrosio, “Household Characteristics and the Distribution of Income In Italy: An Application of Social Distance Measures,” Rev. Income Wealth, vol. 47, no. 1, pp. 43–64, Mar. 2001, doi: 10.1111/1475-4991.00003.
R. Ezcurra, “Polarization trends across the US states,” Appl. Econ. Lett., vol. 16, no. 9, pp. 897–902, May 2009, doi: 10.1080/13504850701222194.
R. Hoffmann, “Medidas de polarização da distribuição da renda e sua evolução no Brasil de 1995 a 2013,” Econ. e Soc., vol. 26, no. 1, pp. 165–187, Apr. 2017, doi: 10.1590/1982-3533.2017v26n1art6.
J. Li, G. Wan, C. Wang, and X. Zhang, “Which indicator of income distribution explains crime better? Evidence from China,” China Econ. Rev., vol. 54, pp. 51–72, Apr. 2019, doi: 10.1016/j.chieco.2018.10.008.
G. M. A. Cuenca and M. H. G. Dompieri, “Dinâmica espacial da canavicultura e análise dos efeitos sobre o valor bruto da produção, na região dos tabuleiros costeiros da Paraíba, Pernambuco e Alagoas,” Rev. Econ. NE, vol. 47, no. 4, pp. 91–106, 2016.
P. B. Coulter, Measuring inequality: A methodological handbook. 2019.
J. Wang, K. Caminada, and C. Wang, “Measuring Income Polarization for Twenty European Countries, 2004–13: A Shapley Growth-Redistribution Decomposition,” East. Europ. Econ., vol. 55, no. 6, pp. 477–499, Nov. 2017, doi: 10.1080/00128775.2017.1345637.
J. E. Foster and M. C. Wolfson, “Polarization and the decline of the middle class: Canada and the U.S.,” J. Econ. Inequal., vol. 8, no. 2, pp. 247–273, Jun. 2010, doi: 10.1007/s10888-009-9122-7.
R. Dawson, “How Significant is a Boxplot Outlier?,” J. Stat. Educ., vol. 19, no. 2, Jul. 2011, doi: 10.1080/10691898.2011.11889610.
L. M. Coelho Junior, E. P. Santos Junior, A. M. M. Nunes, F. J. Simioni, R. Abrahao, and P. R. Junior, “Concentration and Spatial Clustering of Forest-Based Thermoelectric Plants in Brazil,” IEEE Access, vol. 8, pp. 221932–221941, 2020, doi: 10.1109/ACCESS.2020.3042945.