Concentration and Clusters of Black Liquor Thermoelectric Plants in Brazil

Authors

Keywords:

Concentration indicators, Energy economy, Forest Economy, Regional and spatial studies

Abstract

This paper analyzed the concentration and conglomerates of black liquor thermoelectric plants in Brazil, in 2018. Data from the generation information system of the National Electric Energy Agency (ANEEL) were used. Concentration was measured using the Concentration Ratio [CR(k)], Herfindahl-Hirschman Index (HHI), Theil Entropy (E) and the Gini Coefficient (G) and the conglomerates with the scan statistics. The results showed the southern region with the largest number of thermoelectric plants and installed power. The state concentration of thermoelectric plants and the installed power for the CR(k) was moderately high to very high, inferring an oligopolistic market structure. In turn, the HHI and E indices inferred an atomized market. Among the participating companies, the CR(k) and G indicators showed trends in concentration, while HHI and E indicated to an atomized market. Four conglomerates were identified, two for the number of thermoelectric plants and two for installed power. High supply potential was noted in the south of the country and in the south of the northeast region. This research showed way the distribution of bioelectricity supply of black liquor in Brazil. The identification of concentration and conglomerates showed that the offer was associated with the industrial complexes of cellulose and paper, from cogeneration with residual black liquor; which can indicate to investors the importance of this practice and the most relevant location for installation, contributing to the increase of distributed generation and diversification of the national electrical matrix.

 

Downloads

Download data is not yet available.

Author Biographies

Luiz Moreira Coelho Junior, Department of Renewable Energy Engineering, Federal University of Paraíba (UFPB)

Possui graduação em Ciências Econômicas (2001) pela Universidade de Vila Velha (UVV), mestrado (2004) e doutorado (2010) em engenharia florestal pela Universidade Federal de Lavras (UFLA). Desde 2013 é Professor do Departamento de Engenharia de Energias Renováveis, do Centro de Energias Alternativas e Renováveis, da Universidade Federal da Paraíba (UFPB). Tem experiência na área de Economia Aplicada, atuando principalmente nos seguintes temas: economia florestal, desenvolvimento sustentável e energias renováveis, com ênfase em bioenergia.

Edvaldo Pereira Santos Junior, Universidade Federal da Paraíba

Possui graduação em Engenharia de Energias Renováveis (2018) e mestrado em Energias Renováveis (2020) pela Universidade Federal da Paraíba (UFPB). Atualmente é doutorando em Tecnologias Energéticas e Nucleares pela Universidade Federal do Pernambuco (UFPE). Tem experiência na área de Engenharia Econômica, com ênfase em estudos de mercado, atuando principalmente nos temas: bioenergia, concentração industrial, análises regionais e espaciais.

Anna Manuella Melo Nunes, Graduate Program in Renewable Energy (PPGER), Federal University of Paraíba (UFPB).

Possui graduação em Direito (2006) pela Faculdade Estácio do Recife, com especialização profissional em Direito Energético (2015) pelo Instituto Brasileiro de Direito Energético - IBDE/SP. Desde 2011 atua em empresas do setor elétrico. Atualmente é mestranda em Energias Renováveis pela Universidade Federal da Paraíba (UFPB). Tem experiência na área de direito de energia, com experiência na área empresarial, regulatória e ambiental do setor de distribuição, geração e transmissão.

Álvaro Nogueira de Souza, Department of Forestry Engineering, University of Brasília (UnB)

Possui graduação (1996), mestrado (1999) e doutorado (2005) em Engenharia Florestal pela Universidade Federal de Lavras (UFLA). Desde 2006 é professor do Departamento de Engenharia Florestal, da Faculdade de Tecnologia, da Universidade de Brasília (UnB). Tem experiência na área de Recursos Florestais e Engenharia Florestal, com ênfase em Economia Florestal, atuando principalmente nos seguintes temas: florestas de produção, sistemas agroflorestais, comercialização de produtos florestais não madeireiros e uso sustentável dos recursos naturais, recuperação de áreas degradadas, projetos de concessão florestal.

Luís Antônio Coimbra Borges, Department of Forest Sciences, Federal University of Lavras (UFLA)

Possui graduação (2003), mestrado (2005) e doutorado (2008) em Engenharia Florestal pela Universidade Federal de Lavras (UFLA). Desde 2009 é professor do Departamento de Ciências Florestais da UFLA. Tem experiência na área de recursos florestais e engenharia florestal, com ênfase em política e legislação florestal, análise de impactos e planejamento e gestão de recursos naturais.

Flávio José Simioni, Department of Environmental Engineering, State University of Santa Catarina

Possui graduação em Agronomia (1997) pela Universidade do Estado de Santa Catarina (UDESC), mestrado em Economia (2000) pela Universidade Federal de Santa Catarina (UFSC) e doutorado em Engenharia Florestal (2007) pela Universidade Federal do Paraná (UFPR). Desde 2010 é professor do Departamento de Engenharia Sanitária e Ambiental, Centro de Ciências Agrárias e Veterinária, da UDESC - Lages). Tem experiência na área de Ciências Ambientais e Recursos Florestais, com ênfase em energia de biomassa florestal e avaliação econômica e ambiental de cadeias produtivas.

References

R. Shimelmitz, S. L. Kuhn, A. J. Jelinek, A. Ronen, A. E. Clark, and M. Weinstein-Evron, “‘Fire at will’: The emergence of habitual fire use 350,000 years ago,” J. Hum. Evol., vol. 77, pp. 196–203, Dec. 2014, doi: 10.1016/j.jhevol.2014.07.005.

G. Salazar Dias and D. Carrion, “Characterization and modeling of the efficiency of photovoltaic systems,” IEEE Lat. Am. Trans., vol. 13, no. 8, pp. 2580–2586, Aug. 2015, doi: 10.1109/TLA.2015.7332135.

G. Xu, M. Li, and P. Lu, “Experimental investigation on flow properties of different biomass and torrefied biomass powders,” Biomass and Bioenergy, vol. 122, pp. 63–75, Mar. 2019, doi: 10.1016/j.biombioe.2019.01.016.

J. de Castro Reis, R. dos Santos Constant, L. Angulo Meza, and J. C. Soares de Mello, “Multiobjective Linear Programming to Determine the Most Suitable Electrical Energy Matrix for Countries: a Case Study at Brazil,” IEEE Lat. Am. Trans., vol. 17, no. 03, pp. 426–433, Mar. 2019, doi: 10.1109/TLA.2019.8863313.

T. O. S. Alfonso, R. A. Cassel, J. C. M. Siluk, B. P. Silva, and S. F. Venturini, “Analysis of Critical Factors for Energy Efficiency in Productive Systems : a systematic review,” IEEE Lat. Am. Trans., vol. 100, no. 1, pp. 1–10, 2020.

M. T. Tolmasquim, “Energia Termelétrica - Gás Natural, Biomassa, Carvão, Nuclear.” EPE, Rio de Janeiro, p. 417, 2016.

BRACELPA, “Dados do setor,” Dados do setor, 2014. //bracelpa.org.br/bra2/sites/default/files/estatisticas/booklet.pdf.

A. B. Hora, “Panoramas seotriais 2030: papel e celulose,” 2017.

Indústria brasileira de árvores, Relatório 2019, 2019. [Online]. Available: https://www.iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf.

Agência nacional de energia de elétrica - ANEEL, “Sistema de Informações de Geração da ANEEL,” Capacidade de Geração do Brasil, 2019. Available:http: https://bit.ly/2IGf4Q0.

C. Sze Yi, A. Radam, A. Hassan, and M. N. Shamsudin, “Market Structure of Malaysian Palm Oil Refining Industry,” Asian Acad. Manag. J., vol. 23, no. 2, pp. 125–141, 2018, doi: 10.21315/aamj2018.23.2.6.

J. Bain, Industrial organization. New York, 1959.

M. L. Possas, Estruturas de mercado em oligopólio: economia e planejamento, 2a. São Paulo: Hicitec, 1999.

M. Busu, “A Market Concentration Analysis of the Biomass Sector in Romania,” Resources, vol. 9, no. 6, p. 64, May 2020, doi: 10.3390/resources9060064.

J. Kamiński, “The development of market power in the Polish power generation sector: A 10-year perspective,” Energy Policy, vol. 42, pp. 136–147, Mar. 2012, doi: 10.1016/j.enpol.2011.11.057.

R. Garcia, “Economias externas e vantagens competitivas dos produtores em sistemas locais de produção: as visões de Marshall, Krugman e Porter.,” Ensaios FEE, vol. 27, no. 2, pp. 301–224, 2006.

M. Kulldorff and N. Nagarwalla, “Spatial disease clusters: Detection and inference,” Stat. Med., vol. 14, no. 8, pp. 799–810, Apr. 1995, doi: 10.1002/sim.4780140809.

E. N. Smaniotto and T. W. Alves, “Concentração e poder de mercado no sistema bancário brasileiro: uma análise pós-Plano Real,” Perspect. Econômica, vol. 12, no. 1, Apr. 2016, doi: 10.4013/pe.2016.121.03.

P. G. Berger, M. Minnis, and A. Sutherland, “Commercial lending concentration and bank expertise: Evidence from borrower financial statements,” J. Account. Econ., vol. 64, no. 2–3, pp. 253–277, Nov. 2017, doi: 10.1016/j.jacceco.2017.06.005.

K. J. Chalvatzis and A. Ioannidis, “Energy supply security in the EU: Benchmarking diversity and dependence of primary energy,” Appl. Energy, vol. 207, pp. 465–476, 2017, doi: 10.1016/j.apenergy.2017.07.010.

A. Ioannidis, K. J. Chalvatzis, X. Li, G. Notton, and P. Stephanides, “The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands,” Renew. Energy, vol. 143, pp. 440–452, Dec. 2019, doi: 10.1016/j.renene.2019.04.155.

M. Tonini, D. Tuia, and F. Ratle, “Detection of clusters using space - time scan statistics,” Int. J. Wildl. Fire, vol. 18, no. 7, p. 830, 2009, doi: 10.1071/WF07167.

C. Vega Orozco, M. Tonini, M. Conedera, and M. Kanveski, “Cluster recognition in spatial-temporal sequences: the case of forest fires,” Geoinformatica, vol. 16, no. 4, pp. 653–673, Oct. 2012, doi: 10.1007/s10707-012-0161-z.

M. G. Pereira, L. Caramelo, C. V. Orozco, R. Costa, and M. Tonini, “Space-time clustering analysis performance of an aggregated dataset: The case of wildfires in Portugal,” Environ. Model. Softw., vol. 72, pp. 239–249, Oct. 2015, doi: 10.1016/j.envsoft.2015.05.016.

K. D. Randolph, “Using satscantm spatial-scan software with national forest inventory data: A case study in South Carolina,” Math. Comput. For. Nat. Sci., vol. 9, no. 1, pp. 1–13, 2017.

L. M. Coelho Junior, E. P. Santos Junior, A. M. M. Nunes, F. J. Simioni, R. Abrahao, and P. R. Junior, “Concentration and Spatial Clustering of Forest-Based Thermoelectric Plants in Brazil,” IEEE Access, vol. 8, pp. 221932–221941, 2020, doi: 10.1109/ACCESS.2020.3042945.

Google, “Google Maps,” 2019. www.google.com.br/maps (Accessed Jul. 06, 2019).

R. Dawson, “How Significant is a Boxplot Outlier?,” J. Stat. Educ., vol. 19, no. 2, Jul. 2011, doi: 10.1080/10691898.2011.11889610.

A. O. Hirschman, “The paternity of an index,” Am. Econ. Rev., vol. 54, no. 5, pp. 761–762, 1964.

A. Tushaj, “Market concentration in the banking sector: Evidence from Albania.” BERG Working paper series on government and growth, 2010.

M. Resende, “Medidas de concentração industrial: uma resenha,” Análise Econômica, vol. 12, no. 21, pp. 24–33, Oct. 1994, doi: 10.22456/2176-5456.10488.

M. Resende and H. Boff, “Concentração industrial,” in Economia industrial: fundamentos teóricos e práticas no Brasil, L. Kupfer, D.; Hasenclever, Ed. Rio de Janeiro: Campus, 2002, pp. 73–90.

H. Theil, Economics and information theory. Amsterdam: North-Holland, 1967.

C. Gini, “Variabilità e mutabilità (1912),” in Reprinted in memorie di metodologica statistica, E. Pizetti and T. Salvemini, Eds. Rome: Libreria Eredi Virgilio Veschi, 1955.

M. Kulldorff, “A spatial scan statistic,” Commun. Stat. - Theory Methods, vol. 26, no. 6, pp. 1481–1496, Jan. 1997, doi: 10.1080/03610929708831995.

A. M. Nigatu, K. A. Gelaye, D. T. Degefie, and A. Y. Birhanu, “Spatial variations of women’s home delivery after antenatal care visits at lay Gayint District, Northwest Ethiopia,” BMC Public Health, vol. 19, no. 1, p. 677, Dec. 2019, doi: 10.1186/s12889-019-7050-4.

L. Lyrio de Oliveira et al., “Modelling the technical potential of bioelectricity production under land use constraints: A multi-region Brazil case study,” Renew. Sustain. Energy Rev., vol. 123, p. 109765, May 2020, doi: 10.1016/j.rser.2020.109765.

M. I. M. Marques, “Considerações sobre a expansão da indústria de papel e celulose no Brasil a partir do caso da Suzano Papel e Celulose,” GEOgraphia, vol. 17, no. 35, p. 120, Feb. 2016, doi: 10.22409/GEOgraphia2015.v17i35.a13731.

D. A. L. Silva, A. L. Raymundo Pavan, J. Augusto de Oliveira, and A. R. Ometto, “Life cycle assessment of offset paper production in Brazil: hotspots and cleaner production alternatives,” J. Clean. Prod., vol. 93, pp. 222–233, Apr. 2015, doi: 10.1016/j.jclepro.2015.01.030.

F. M. Scherer and D. Ross, Industrial market structure and economic performance, 3rd ed. Boston: Houghton Mifflin, 1990.

A. E. Broughel, “Impact of state policies on generating capacity for production of electricity and combined heat and power from forest biomass in the United States,” Renew. Energy, vol. 134, pp. 1163–1172, 2019, doi: 10.1016/j.renene.2018.09.058.

R. L. G. Mattos and A. C. V. Valença, “A reestruturação do setor de papel e celulose,” Rio de Janeiro, 1999.

Published

2021-05-26

How to Cite

Coelho Junior, L. M., Santos Junior, E. P., Nunes, A. M. M., Souza, Álvaro N. de, Borges, L. A. C., & Simioni, F. J. (2021). Concentration and Clusters of Black Liquor Thermoelectric Plants in Brazil. IEEE Latin America Transactions, 19(12), 2122–2129. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/5244