Does heterogeneity operationalization matter to model the diffusion phenomena?


  • Lorena Cadavid Instituto Tecnológico Metropolitano. Universidad Nacional de Colombia. Medellín, Colombia
  • Luisa Fernanda Díez-Echavarría Instituto Tecnológico Metropolitano. Medellín, Colombia
  • Alejandro Valencia-Arias Corporación Universitaria Americana. Medellín, Colombia Instituto de Investigación de la Universidad Católica los Ángeles de Chimbote, Perú


agent-based modeling, diffusion of innovations, heterogeneity


Population heterogeneity is one of the basics of the diffusion models at the individual level; although its importance is well known, there is a lack of knowledge about the impact of the technique to operationalize this heterogeneity. This paper evaluates the impact of three techniques for operationalizing heterogeneity in modeling the diffusion of innovations at the individual level: (1) modeling one-to-one, (2) homogeneous group modeling, and (3) heterogeneous group modeling. An agent-based diffusion model was developed and the impact of each technique was evaluated on three variables: diffusion, adoption intention, and computational requirements. The input data for the model came from 230 people surveyed on the intention to adopt an innovation. As a conclusion, it was mainly observed that in homogeneous groups, the techniques present significant differences in the model results and marginal differences in the computational requirements. Therefore, the technique for representing agent heterogeneity in modeling diffusion phenomena at the individual level is not a trivial component in models, and its choice must be deliberate.


Download data is not yet available.

Author Biographies

Lorena Cadavid, Instituto Tecnológico Metropolitano. Universidad Nacional de Colombia. Medellín, Colombia

Lorena Cadavid es Doctora en Ingeniería de Sistemas de la Universidad Nacional de Colombia – sede Medellín, Magíster en Ingeniería de Sistemas desde el año 2010 e Ingeniera administradora desde el año 2006. Actualmente es docente del Instituto Tecnológico Metropolitano (ITM), y sus áreas de investigación incluyen difusión de innovaciones, modelado y simulación basada en agentes y tecnologías limpias.

Luisa Fernanda Díez-Echavarría, Instituto Tecnológico Metropolitano. Medellín, Colombia

Luisa Díez-Echavarría es estudiante de Doctorado en Ingeniería de Sistemas de la Universidad Nacional de Colombia – sede Medellín, Magíster en Ingeniería de Sistemas e Ingeniera administradora. Docente del Instituto Tecnológico Metropolitano (ITM), y sus áreas de investigación incluyen modelado basado en agentes y sistemas socio-ecológicos.

Alejandro Valencia-Arias, Corporación Universitaria Americana. Medellín, Colombia Instituto de Investigación de la Universidad Católica los Ángeles de Chimbote, Perú

Alejandro Valencia-Arias es Doctor en Ingeniería – Industria y Organizaciones de la Universidad Nacional de Colombia – sede Medellín, Magíster en Ingeniería de Sistemas e Ingeniero administrador. Docente de la Corporación Universitaria Americana y mentor del Instituto de Investigación de la Universidad Católica los Ángeles de Chimbote. Sus áreas de investigación incluyen difusión de innovaciones, modelado y simulación basada en agentes y aceptación tecnológica.


C. M. Macal, «Everything you need to know about agent-based modelling and simulation | SpringerLink», J. Simul. Vol., vol. 10, 2016, Accedido: abr. 07, 2021. [En línea]. Disponible en:

S. Chen, P. Gong, J. Zhang, Y. Shan, X. Han, y L. Zhang, «Use of qPCR for the analysis of population heterogeneity and dynamics during Lactobacillus delbrueckii spp. bulgaricus batch fculture», Artif. Cells Nanomedicine Biotechnol., vol. 49, n.o 1, pp. 1-10, dic. 2021, doi: 10.1080/21691401.2020.1860074.

A. A. Rampini, «Sequential Lifting of COVID-19 Interventions with Population Heterogeneity», National Bureau of Economic Research, Working Paper 27063, abr. 2020. doi: 10.3386/w27063.

T. Britton, F. Ball, y P. Trapman, «A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2», Science, vol. 369, n.o 6505, pp. 846-849, ago. 2020, doi: 10.1126/science.abc6810.

R. Chatterjee y J. Eliashberg, «The innovation diffusion process in a heterogeneous population: A micromodeling approach», Manag. Sci., pp. 1057-1079, 1990.

S. M. M. Manson, «Bounded rationality in agent-based models: experiments with evolutionary programs», Int. J. Geogr. Inf. Sci., vol. 20, n.o 9, pp. 991-1012, 2006.

J. Y. Park, M. M. Wall, I. Moustaki, y A. H. Grossman, «A Joint Modeling Approach for Longitudinal Outcomes and Non-ignorable Dropout under Population Heterogeneity in Mental Health Studies», J. Appl. Stat., vol. 0, n.o 0, pp. 1-16, jun. 2021, doi: 10.1080/02664763.2021.1945000.

T. C. Schelling, Micromotives and Macrobehavior. United States of America: W. W. Norton & Company, Inc, 1978.

E. M. Rogers, Diffusion of Innovations, Third Edit., vol. 11. London: Collier Macmillan Publishers, 1983.

M. Veera Krishna, «Mathematical modelling on diffusion and control of COVID–19», Infect. Dis. Model., vol. 5, pp. 588-597, ago. 2020, doi: 10.1016/j.idm.2020.08.009.

C. M. Buchmann, K. Grossmann, y N. Schwarz, «How agent heterogeneity, model structure and input data determine the performance of an empirical ABM – A real-world case study on residential mobility», Environ. Model. Softw., vol. 75, pp. 77-93, ene. 2016, doi: 10.1016/j.envsoft.2015.10.005.

H. Rahmandad y J. Sterman, «Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and differential equation models», Manag. Sci., vol. 54, n.o 5, pp. 998-1014, 2008.

D. Tosi y A. Campi, «How Data Analytics and Big Data Can Help Scientists in Managing COVID-19 Diffusion: Modeling Study to Predict the COVID-19 Diffusion in Italy and the Lombardy Region», J. Med. Internet Res., vol. 22, n.o 10, p. e21081, oct. 2020, doi: 10.2196/21081.

J. D. Bohlmann, R. J. Calantone, y M. Zhao, «The Effects of Market Network Heterogeneity on Innovation Diffusion: An Agent-Based Modeling Approach», J. Prod. Innov. Manag., vol. 27, n.o 5, pp. 741-760, 2010, doi:

N. Fujii, T. Kaihara, y T. Eda, «Agent-Based Simulation of Product Diffusion with Network Externality in a Heterogeneous Consumer Network», J. Adv. Comput. Intell. Intell. Inform., vol. 15, n.o 2, pp. 173-179, mar. 2011, doi: 10.20965/jaciii.2011.p0173.

C. S. E. Bale, N. J. McCullen, T. J. Foxon, A. M. Rucklidge, y W. F. Gale, «Modeling diffusion of energy innovations on a heterogeneous social network and approaches to integration of real-world data», Complexity, vol. 19, n.o 6, pp. 83-94, 2014, doi:

A. Diamantopoulos, B. B. Schlegelmilch, R. R. Sinkovics, y G. M. Bohlen, «Can socio-demographics still play a role in profiling green consumers? A review of the evidence and an empirical investigation», J. Bus. Res., vol. 56, n.o 6, pp. 465-480, 2003.

E. R. Dugundji y L. Gulyás, «Sociodynamic discrete choice on networks in space: impacts of agent heterogeneity on emergent outcomes», Environ. Plan. B Plan. Des., vol. 35, n.o 6, pp. 1028-1054, 2008.

K. Raya, C. G. Gaxiola, y M. Castanon, «Agent-Based Model for Self Management of Network Flows using Negotiation», IEEE Lat. Am. Trans., vol. 16, n.o 1, pp. 210-215, ene. 2018, doi: 10.1109/TLA.2018.8291475.

E. Kiesling, M. Günther, C. Stummer, y L. M. Wakolbinger, «Agent-based simulation of innovation diffusion: a review», Cent. Eur. J. Oper. Res., may 2011, doi: 10.1007/s10100-011-0210-y.

M. Duffin y J. Cartlidge, «Agent-Based Model Exploration of Latency Arbitrage in Fragmented Financial Markets», en 2018 IEEE Symposium Series on Computational Intelligence (SSCI), nov. 2018, pp. 2312-2320. doi: 10.1109/SSCI.2018.8628638.

L. F. Díez, A. Valencia, y J. Bermudez, «Agent-based Model for the Analysis of Technological Acceptance of Mobile Learning», IEEE Lat. Am. Trans., vol. 15, n.o 6, pp. 1121-1127, jun. 2017, doi: 10.1109/TLA.2017.7932700.

R. Kemp y M. Volpi, «The diffusion of clean technologies: a review with suggestions for future diffusion analysis», J. Clean. Prod., vol. 16, n.o 1, pp. S14-S21, 2008.

R. Peres, E. Muller, y V. Mahajan, «Innovation diffusion and new product growth models: A critical review and research directions», Int. J. Res. Mark., mar. 2010, doi: 10.1016/j.ijresmar.2009.12.012.

H. Zhang et al., «Modeling Heterogeneous Statistical Patterns in High-dimensional Data by Adversarial Distributions: An Unsupervised Generative Framework», dic. 2020, doi: 10.1145/3366423.3380213.

L. Grajciar et al., «Towards operando computational modeling in heterogeneous catalysis», Chem. Soc. Rev., vol. 47, n.o 22, pp. 8307-8348, 2018, doi: 10.1039/C8CS00398J.

M. Karsai, G. Iñiguez, K. Kaski, y J. Kertész, «Complex contagion process in spreading of online innovation», J. R. Soc. Interface, vol. 11, n.o 101, 2014, doi: 10.1098/rsif.2014.0694.

A. Kangur, W. Jager, R. Verbrugge, y M. Bockarjova, «An agent-based model for diffusion of electric vehicles», J. Environ. Psychol., 2017, doi: 10.1016/j.jenvp.2017.01.002.

M. Moglia, A. Podkalicka, y J. Mcgregor, «An Agent-Based Model of Residential Energy Efifciency Adoption», J. Artif. Soc. Soc. Simul., vol. 21, n.o 3, p. 26, 2018, doi: 10.18564/jasss.3729.

M. Prause y C. Günther, «Technology diffusion of Industry 4.0: An agent-based approach», J. Comput. Econ. Econom., vol. 9, n.o 1-2, pp. 29-48, 2019, doi: 10.1504/IJCEE.2019.097793.

W. Ning, J. Guo, X. Liu, y H. Pan, «Incorporating individual preference and network influence on choice behavior of electric vehicle sharing using agent-based model», Int. J. Sustain. Transp., pp. 1-15, 2019, doi: 10.1080/15568318.2019.1656310.

E. Hunter, B. M. Namee, y J. Kelleher, «An open-data-driven agent-based model to simulate infectious disease outbreaks», PLOS ONE, vol. 13, n.o 12, p. e0208775, dic. 2018, doi: 10.1371/journal.pone.0208775.

D. Helbing y S. Balietti, «How to Do Agent-Based Simulations in the Future: From Modeling Social Mechanisms to Emergent Phenomena and Interactive Systems Design Why Develop and Use Agent-Based Models ?», 2011.

M. Paolucci, «N. Gilbert and K. G. Troitzch, Simulation for the Social Scientist», J. Manag. Gov., vol. 12, n.o 2, pp. 225-231, may 2008, doi: 10.1007/s10997-008-9052-y.

Elsevier, «Why choose Scopus - Scopus benefits», 2020. (accedido jul. 31, 2020).

F. Rebaudo y O. Dangles, «An agent-based modeling framework for integrated pest management dissemination programs», Environ. Model. Softw., vol. 45, pp. 141-149, 2013, doi: 10.1016/j.envsoft.2012.06.014.

G. Jiang, P. R. Tadikamalla, J. Shang, y L. Zhao, «Impacts of knowledge on online brand success: An agent-based model for online market share enhancement», Eur. J. Oper. Res., vol. 248, n.o 3, pp. 1093-1103, 2016, doi: 10.1016/j.ejor.2015.07.051.

E. Beretta, M. Fontana, M. Guerzoni, y A. Jordan, «Cultural dissimilarity: Boon or bane for technology diffusion?», Technol. Forecast. Soc. Change, vol. 133, n.o September 2017, pp. 95-103, 2018, doi: 10.1016/j.techfore.2018.03.008.

J. Palmer, G. Sorda, y R. Madlener, «Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation», Technol. Forecast. Soc. Change, vol. 99, pp. 106-131, 2015, doi: 10.1016/j.techfore.2015.06.011.

F. Krebs, «An empirically grounded model of green electricity adoption in Germany: Calibration, validation and insights into patterns of diffusion», Jasss, vol. 20, n.o 2, 2017, doi: 10.18564/jasss.3429.

Sinus Sociovision GmbH, «Die Sinus-Milieus®in Deutschland 2007», 2007.

W. Jager y M. Janssen, «An updated conceptual framework for integrated modeling of human decision making: The Consumat II», 2012.

G. Even y P.-M. Seidel, «A comparison of three rounding algorithms for IEEE floating-point multiplication», IEEE Trans. Comput., vol. 49, n.o 7, pp. 638-650, jul. 2000, doi: 10.1109/12.863033.

A. H. Halim y I. Ismail, «Combinatorial Optimization: Comparison of Heuristic Algorithms in Travelling Salesman Problem», Arch. Comput. Methods Eng., vol. 26, n.o 2, pp. 367-380, abr. 2019, doi: 10.1007/s11831-017-9247-y.

J.-W. Cho y J.-H. Kim, «Performance Comparison of Heuristic Algorithms for UAV Deployment with Low Power Consumption», en 2018 International Conference on Information and Communication Technology Convergence (ICTC), oct. 2018, pp. 1067-1069. doi: 10.1109/ICTC.2018.8539485.

J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, y D. M. Hawkins, «Characterizing and comparing prevailing simulation techniques», en 11th International Symposium on High-Performance Computer Architecture, feb. 2005, pp. 266-277. doi: 10.1109/HPCA.2005.8.

L. Cadavid y C. J. F. Cardona, «Impacto de la regla de decisión en el modelado de la difusión de innovaciones», Production, vol. 25, pp. 751-753, nov. 2015, doi: 10.1590/0103-6513.053212.

R. F. Bordley, «Systems simulation comparing different decision rules», Behav. Sci., vol. 30, n.o 4, pp. 230-239, 1985, doi: 10.1002/bs.3830300408.

J. W. Kamau y I. D. Sanders, «An Empirical Investigation into the Effect of Usability on Adoption of Desktop Open Source Software by University Students in Kenya», Comput. Inf. Sci., vol. 6, pp. 108-117, 2013, doi: 10.5539/cis.v6n3p108.

M. Fishbein y I. Ajzen, Belief, attitude, intention and behavior: An introduction to theory and research. 1975.

F. D. Davis, R. P. Bagozzi, y P. R. Warshaw, «User Acceptance of Computer Technology: A Comparison of Two Theoretical Models», Manag. Sci., vol. 35, n.o 8, pp. 982-1003, 1989.

K. Ven, J. Verelst, y H. Mannaert, «Should You Adopt Open Source Software?», IEEE Softw., vol. 25, n.o 3, pp. 54-59, may 2008, doi: 10.1109/MS.2008.73.

L. Morgan y P. Finnegan, «How perceptions of open source software influecne adoption: an exploratory study.», 2007.

B. Rossi, B. Russo, y G. Succi, «Adoption of free/libre open source software in public organizations: factors of impact», Inf. Technol. People, vol. 25, n.o 2, pp. 156-187, jun. 2012, doi: 10.1108/09593841211232677.

C. Alexandre De Souza, E. Parada, V. Prado, L. L. Humes, y J. P. de Albuquerque, «Open Source Software Adoption: An Analisys Based on the Theory of Planned Behavior», en II Encontro de Administracao da Informacao, 2009, pp. 1-12.

H. Baytiyeh y J. Pfaffman, «Open source software: A community of altruists», Comput. Hum. Behav., vol. 26, n.o 6, pp. 1345-1354, 2010, doi: 10.1016/j.chb.2010.04.008.

N. Choi y K. Yi, «Raising the general public’s awareness and adoption of open source software through social Q&A interactions», Online Inf. Rev., vol. 39, n.o 1, pp. 119-139, feb. 2015, doi: 10.1108/OIR-06-2014-0139.

U. Willensky, «NetLogo». Northwestern University, 2012.

M. E. Newman, «Models of the small world», J. Stat. Phys., vol. 101, n.o 3-4, pp. 819-841, 2000.

A. L. Barabâsi, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, y T. Vicsek, «Evolution of the social network of scientific collaborations», Phys. Stat. Mech. Its Appl., vol. 311, n.o 3-4, pp. 590-614, 2002.

U. Wilensky y W. Rand, «NetLogo Preferential Attachment Simple model». Center for Connected Learning and Computer-Based Modeling, Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL., 2008.

C. S. E. Bale, N. J. McCullen, T. J. Foxon, A. M. Rucklidge, y W. F. Gale, «Harnessing social networks for promoting adoption of energy technologies in the domestic sector», Energy Policy, vol. 63, pp. 833-844, 2013, doi: 10.1016/j.enpol.2013.09.033.

D. McCoy y S. Lyons, «Consumer preferences and the influence of networks in electric vehicle diffusion: An agent-based microsimulation in Ireland», Energy Res. Soc. Sci., vol. 3, pp. 89-101, 2014, doi: 10.1016/j.erss.2014.07.008.

M. A. Zaffar, R. L. Kumar, y K. X. Zhao, «Impact of Interorganizational Relationships on Technology Diffusion: An Agent-Based Simulation Modeling Approach», IEEE Trans. Eng. Manag., vol. 61, n.o 1, pp. 68-79, 2014.

S. D’Alessandro y H. Winzar, «From i-phone 3G to i-phone 4G: A two-stage complex systems model of the two stage diffusion process», Australas. Mark. J., vol. 22, n.o 1, pp. 69-72, 2014, doi: 10.1016/j.ausmj.2013.12.011.

V. Rai y S. A. Robinson, «Agent-based modeling of energy technology adoption: Empirical integration of social, behavioral, economic, and environmental factors», Environ. Model. Softw., vol. 70, pp. 163-177, ago. 2015, doi: 10.1016/j.envsoft.2015.04.014.

C. Stummer, E. Kiesling, M. Günther, y R. Vetschera, «Innovation diffusion of repeat purchase products in a competitive market: An agent-based simulation approach», Eur. J. Oper. Res., vol. 245, n.o 1, pp. 157-167, 2015, doi: 10.1016/j.ejor.2015.03.008.

M. G. Nejad, M. Amini, y D. L. Sherrell, «The profit impact of revenue heterogeneity and assortativity in the presence of negative word-of-mouth», Int. J. Res. Mark., vol. 33, n.o 3, pp. 656-673, 2016, doi: 10.1016/j.ijresmar.2015.11.005.

S. min Yu, Y. Fan, L. Zhu, y W. Eichhammer, «Modeling the emission trading scheme from an agent-based perspective: System dynamics emerging from firms’ coordination among abatement options», Eur. J. Oper. Res., vol. 286, n.o 3, pp. 1113-1128, 2020, doi: 10.1016/j.ejor.2020.03.080.

A. Tversky y D. Kahneman, «Judgment under uncertainty: Heuristics and biases», science, vol. 185, n.o 4157, pp. 1124-1131, 1974.

J.-S. Lee et al., «The complexities of agent-based modeling output analysis», J. Artif. Soc. Soc. Simul., vol. 18, n.o 4, 2015, doi: 10.18564/jasss.2897.



How to Cite

Cadavid, L., Díez-Echavarría, L. F., & Valencia-Arias, A. (2021). Does heterogeneity operationalization matter to model the diffusion phenomena?. IEEE Latin America Transactions, 20(4), 599–607. Retrieved from