Fusion of Sentinel 1 and Alos Palsar Data to Separate Palm Oil Plantations from Forest Cover Mapping using Pauli Decomposition Approach
Keywords:
SAR, PolSAR, NDFI, Decomposition, Forest Mapping, Landsat.Abstract
In this work, a multi-sensor approach to extract misclassified oil palm plantations from forest cover map using a modified Pauli Decomposition technique is presented. The proposed method includes the generation of a primary forest cover map built using a Landsat-based Normalized Difference Fraction Index, and then the palm oil plantation is filtered out using scattering mechanisms through the Modified Pauli Decomposition technique based on the fusion of Sentinel 1 and Alos Palsar data. Accuracy assessment of the final product, produces accuracy values of 0.946 for forest class, while the classification accuracy for non-forest class is 0.92.
Downloads
References
K. Calders, I. Jonckheere, J. Nightingale, and M. Vastaranta, “Remote sensing technology applications in forestry and redd+,” 2020.
A. Miranda, A. Lara, A. Altamirano, C. Zamorano-Elgueta, H. J. Hernández, M. E. González, A. Pauchard, and Á. Promis, “Monitoreo de la superficie de los bosques nativos de chile: un desafı́o pendiente,” Bosque (Valdivia), vol. 39, no. 2, pp. 265–275, 2018
E. Honorio Coronado and T. R. Baker, “Manual para el monitoreo del ciclo del carbono en bosques amazónicos,” 2010
F. Team et al., “From reference levels to results reporting: Redd+ under the united nations framework convention on climate change.” 2020.
S.-M. Joo and J.-S. Um, “Evaluating mrv potentials based on satellite
image in un-redd opportunity cost estimation: A case study for mt.
geum-gang of north korea,” Spatial Information Research, vol. 22, no. 3,
pp. 47–58, 2014.
D. Müller, S. Suess, A. A. Hoffmann, and G. Buchholz, “The value of satellite-based active fire data for monitoring, reporting and verification of redd+ in the lao pdr,” Human ecology, vol. 41, no. 1, pp. 7–20, 2013.
R. Meng, J. Wu, F. Zhao, B. D. Cook, R. P. Hanavan, and S. P. Serbin, “Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques,” Remote Sensing of Environment, vol. 210, pp. 282–296, 2018.
P. Hyde, R. Dubayah, W. Walker, J. B. Blair, M. Hofton, and C. Hunsaker, “Mapping forest structure for wildlife habitat analysis using multi-sensor (lidar, sar/insar, etm+, quickbird) synergy,” Remote
Sensing of Environment, vol. 102, no. 1-2, pp. 63–73, 2006.
M. Vohland, J. Stoffels, C. Hau, and G. Schuler, “Remote sensing techniques for forest parameter assessment: multispectral classification and linear spectral mixture analysis,” Silva Fennica, vol. 41, no. 3, p.441, 2007.
A. Banskota, N. Kayastha, M. J. Falkowski, M. A. Wulder, R. E. Froese, and J. C. White, “Forest monitoring using landsat time series data: A review,” Canadian Journal of Remote Sensing, vol. 40, no. 5, pp. 362–
, 2014.
E. Muñoz, A. Zozaya, and E. Lindquist, “Satellite remote sensing of forest degradation using ndfi and the bfast algorithm,” IEEE Latin America Transactions, vol. 18, no. 07, pp. 1288–1295, 2020.
G. P. Asner, M. Keller, R. Pereira Jr, and J. C. Zweede, “Remote sensing of selective logging in amazonia: Assessing limitations based on detailed field observations, landsat etm+, and textural analysis,” Remote Sensing of Environment, vol. 80, no. 3, pp. 483–496, 2002.
C. Dickinson, P. Siqueira, D. Clewley, and R. Lucas, “Classification of forest composition using polarimetric decomposition in multiple landscapes,” Remote sensing of environment, vol. 131, pp. 206–214, 2013.
J. C. Vogeler and W. B. Cohen, “A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat models,” Revista de Teledetección.(45): 1-14., no. 45, pp. 1–14, 2016.
“CMNUCConvensión marco de las naciones unidas para el cambio climático,” https://redd.unfccc.int/submissions.html, accessed: 2021-02-18.
A. Zozaya, “Electromagnetic interaction models for the characterization of targets in sar scenes: preliminary literature review,” Revista Ingenierı́a UC, vol. 22, no. 1, pp. 26–63, 2015.
X. Mei, W. Nie, J. Liu, and K. Huang, “Polsar image crop classification based on deep residual learning network,” in 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics).
IEEE, 2018, pp. 1–6.
M. Erith, Z. Alfonso, and L. Erik, “A multi-sensor approach to separate palm oil plantations from forest cover using ndfi and a modified pauli decomposition technique,” in IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 4481–4484.
D. Roberts, M. Smith, and J. Adams, “Green vegetation, nonphotosynthetic vegetation, and soils in aviris data,” Remote Sensing of Environment, vol. 44, no. 2-3, pp. 255–269, 1993.
C. Souza Jr, L. Firestone, L. M. Silva, and D. Roberts, “Mapping forest degradation in the eastern amazon from spot 4 through spectral mixture models,” Remote sensing of environment, vol. 87, no. 4, pp. 494–506, 2003.
N. Keshava, “A survey of spectral unmixing algorithms,” Lincoln laboratory journal, vol. 14, no. 1, pp. 55–78, 2003.
C. M. Souza Jr, D. A. Roberts, and M. A. Cochrane, “Combining spectral and spatial information to map canopy damage from selective logging and forest fires,” Remote Sensing of Environment, vol. 98, no. 2-3, pp. 329–343, 2005.
B. R. Parida and S. P. Mandal, “Polarimetric decomposition methods for lulc mapping using alos l-band polsar data in western parts of mizoram, northeast india,” SN Applied Sciences, vol. 2, pp. 1–15, 2020.
M. Musthafa, U. Khati, and G. Singh, “Sensitivity of polsar decomposition to forest disturbance and regrowth dynamics in a managed forest,” Advances in Space Research, vol. 66, no. 8, pp. 1863–
, 2020.
D. Hernández and D. Pinilla, “Realización de mapas de cobertura de la tierra a partir de imágenes polarimétricas,” Revista de teledetección: Revista de la Asociación Española de Teledetección, no. 39, pp. 119–124, 2013.
L. Zhang, J. Zhang, B. Zou, and Y. Zhang, “Comparison of methods for target detection and applications using polarimetric sar image,” Piers online, vol. 4, no. 1, pp. 140–145, 2008.
X. Huang, N. Torbick, and B. Ziniti, “Study of a simple volume scattering model on burned forest using polarimetric palsar-2 data,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 12, pp. 1872–1876,
R. Natsuaki, T. Shimada, and A. Hirose, “Effect of temporal baseline in pixel-by-pixel scattering mechanism vector optimization for polinsar,” in EUSAR 2018; 12th European Conference on Synthetic Aperture Radar. VDE, 2018, pp. 1–3.
FAO, “Sepal,” 2020.
N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google earth engine: Planetary-scale geospatial analysis for everyone,” Remote Sensing of Environment, 2017. [Online]. Available: https://doi.org/10.1016/j.rse.2017.06.031
K. Xu, J. Qian, Z. Hu, Z. Duan, C. Chen, J. Liu, J. Sun, S. Wei, and X. Xing, “A new machine learning approach in detecting the oil palm plantations using remote sensing data,” Remote Sensing, vol. 13, no. 2, p. 236, 2021.
K. L. Chong, K. D. Kanniah, C. Pohl, and K. P. Tan, “A review of remote sensing applications for oil palm studies,” Geo-spatial Information Science, vol. 20, no. 2, pp. 184–200, 2017.
![](https://latamt.ieeer9.org/public/journals/1/submission_5664_9223_coverImage_en_US.png)