Generation of Real Datasets for Network Simulation

Authors

Keywords:

Dataset, simulation, real data, traffic interventions, urban mobility, mobile application

Abstract

The high growth of urban centers brings several problems for the population, such as socioeconomic and health problems due to toxins, polluting gases, delay in emergency care, and the stress to which citizens are exposed to traffic. Generally, for predicting the impact of a given action in the city, simulations are used to take into account the mobility of its inhabitants. These simulations must correspond with the environment that you want to be represented. Therefore, datasets with real data, make the simulations more reliable so that the results obtained are more satisfactory. The project aims to build a dataset with real data of user locations and traffic interventions for network simulations, optimize services for intelligent transport systems, and improve urban mobility in the city of Catanduva - SP. The results were performed on the mobile application (TIMELESS) and show that it consumes few smartphone resources (data, memory, and battery) to collect and generate the data set, compared to the use of other applications in the same segment (traffic monitoring and route suggestion).

Downloads

Download data is not yet available.

Author Biographies

Matheus Sanches Quessada, Universidade Estadual Paulista - Júlio de Mesquita Filho (UNESP)

Tecnólogo em Análise e Desenvolvimento de Sistemas pelo Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) em 2019. Atualmente é aluno do Programa de Pós-Graduação em Ciência da Computação pela Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP). Possui experiência em desenvolvimento de software, aplicações móveis, aplicações web. Sua linha de pesquisa é em redes veiculares, gerenciamento de recursos e sistemas de transporte inteligentes.

Douglas Lieira, Universidade Estadual Paulista - Júlio de Mesquita Filho (UNESP)

Tecnólogo em Informática Para Negócios (FATEC) em 2011, Especialização em Desenvolvimento Web (Centro Universitário Claretiano) em 2013 e realizou o Programa Especial de Formação Pedagógica - equivalente a Licenciatura Plena em Informática (Instituto Paulista São José de Ensino Superior) em 2015. Atualmente é professor no Instituto Federal de São Paulo (IFSP) e cursa mestrado em Ciência da Computação no Programa de Pós-Graduação da Universidade Estadual Paulista - Júlio de Mesquita Filho (UNESP), com pesquisas nas áreas de redes veiculares e gerenciamento de recursos em redes.

Rickson Pereira, Universidade Estadual Paulista - Júlio de Mesquita Filho (UNESP)

Tecnólogo em Análise e Desenvolvimento de Sistemas pelo Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) em 2018. Atualmente é aluno regular Mestrado em Ciência da Computação no Programa de Pós-Graduação da Universidade Estadual Paulista, Júlio de Mesquita Filho (UNESP), com ênfase nas áreas de transporte inteligente e gerenciamento de recursos em redes veiculares.

Euclydes Gottsfritz, Universidade Estadual Paulista - Júlio de Mesquita Filho (UNESP)

Tecnólogo em Processamento de Dados pela Faculdade de Tecnologia de Taquaritinga (FATEC-TQ) em 2011 e especialização em Redes de Computadores pela Escola Superior Aberta do Brasil (ESAB) em 2016. Atualmente é técnico de laboratório - área de informática no Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP - Campus Catanduva) e aluno do Programa de Pós-Graduação em Ciência da Computação pela Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP). Possui interesse e experiência na área de Ciência da Computação, com ênfase em Hardware e Rede.

Rodolfo Meneguette, Universidade de São Paulo (USP)

Bacharel em Ciência da Computação pelo Universidade Paulista (UNIP) em 2006. Mestre em Ciência da Computação pela Universidade Federal de São Carlos (UFSCar) em 2009. Doutor em Ciência da Computação pela Universidade Estadual de Campinas (UNICAMP) em 2013. Pós-Doutorando pela Universidade de Ottawa (UOttawa) em 2017. Atualmente é professor do Instituto De Ciências Matemáticas e de Computação (ICMC) da Universidade de São Paulo (USP). Líder do Grupo de pesquisa internet das coisas com foco em computação urbana. Sua linha de pesquisa é em sistema de transporte inteligente, redes veiculares, nuvens, gerenciamento de mobilidade.

References

R. S. Pereira, D. D. Lieira, M. A. C. da Silva, A. H. M. Pimenta, J. B. D. da Costa, D. Ros´ario, and R. I. Meneguette, “A novel fog-based resource allocation policy for vehicular clouds in the highway environment,” in 2019 IEEE Latin-American Conference on Communications (LATINCOM), 2019, pp. 1–6.

R. Zhong, A. Sumalee, T. Pan, and W. Lam, “Stochastic cell transmission model for traffic network with demand and supply uncertainties,” Transportmetrica A: Transport Science, vol. 9, no. 7, pp. 567–602, 2013.

R. I. Meneguette, R. De Grande, and A. A. Loureiro, Intelligent Transport System in Smart Cities. Springer, 2018.

L. Souza, “Vendas de ve´ıculos crescem 11,4% no acumulado at´e setembro,” 2019, dispon´ıvel em: http://agenciabrasil.ebc.com.br/economia/noticia/2019-10/vendasde-veiculos-crescem-114-no-acumulado-ate-setembro.

R. I. Meneguette and A. Boukerche, “Vehicular clouds leveraging mobile urban computing through resource discovery,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–8, 2019.

F. Xia, J. Wang, X. Kong, Z. Wang, J. Li, and C. Liu, “Exploring human mobility patterns in urban scenarios: A trajectory data perspective,” IEEE Communications Magazine, vol. 56, no. 3, pp. 142–149, 2018.

M. Lourenc¸o, T. S. Gomides, F. S. H. de Souza, R. I. Meneguette, and D. L. Guidoni, “A traffic management service based on v2i communication for vehicular ad-hoc networks,” in Proceedings of the 10th Latin America Networking Conference, ser. LANC ’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 25–31. [Online]. Available: https://doi.org/10.1145/3277103.3277132

R. I. Meneguette, A. Boukerche, A. H. M. Pimenta, and M. Meneguette, “A resource allocation scheme based on semi-markov decision process for dynamic vehicular clouds,” in 2017 IEEE International Conference on Communications (ICC), 2017, pp. 1–6.

S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, “A comprehensive survey on vehicular ad hoc

network,” Journal of Network and Computer Applications, vol. 37, pp. 380 – 392, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S108480451300074X

R. I. Meneguette, G. P. R. Filho, L. F. Bittencourt, J. Ueyama, B. Krishnamachari, and L. A. Villas, “Enhancing intelligence in inter-vehicle communications to detect and reduce congestion in urban centers,” in 2015 IEEE Symposium on Computers and Communication (ISCC), 2015, pp. 1–6.

G. Ho, Y. P. Tsang, C.-H. Wu, W. Wong, and K. Choy, “A computer vision-based roadside occupation surveillance system for intelligent transport in smart cities,” Sensors, vol. 19, p. 1796, 04 2019.

R. I. Meneguette and A. Boukerche, “Peer-to-peer protocol for allocated resources in vehicular cloud based on v2v communication,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC), 2017, pp. 1–6.

R. I. Meneguette, E. R. M. Madeira, and L. F. Bittencourt, “Multinetwork packet scheduling based on vehicular ad hoc network applications,” in 2012 8th international conference on network and service management (cnsm) and 2012 workshop on systems virtualiztion management (svm), 2012, pp. 214–218.

A. Boukerche and R. I. Meneguette, “Vehicular cloud network: A new challenge for resource management based systems,” in 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), June 2017, pp. 159–164.

F. A. Silva, C. Celes, A. Boukerche, L. B. Ruiz, and A. A. Loureiro, “Filling the gaps of vehicular mobility traces,” in Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, ser. MSWiM ’15. New York, NY, USA: Association for Computing Machinery, 2015, p. 47–54. [Online]. Available: https://doi.org/10.1145/2811587.2811612

D. Djenouri, E. Nekka, and W. Soualhi, “Simulation of mobility models in vehicular ad hoc networks,” in Proceedings of the 2008 Ambi-Sys Workshop on Software Organisation and MonIToring of Ambient Systems, ser. SOMITAS ’08. Brussels, BEL: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2008.

H. Huang, D. Zhang, Y. Zhu, M. Li, and M.-Y. Wu, “A metropolitan taxi mobility model from real gps traces.” J. UCS, vol. 18, no. 9, pp. 1072–1092, 2012.

M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “Crawdad data set epfl/mobility (v. 2009-02-24),” 2009.

L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi, “Crawdad dataset roma/taxi (v. 2014-07-17),” See http://crawdad.org/roma/taxi/20140717, 2014.

A. Ghosh, M. Nashaat, J. Miller, S. Quader, and C. Marston, “A comprehensive review of tools for exploratory

analysis of tabular industrial datasets,” Visual Informatics, vol. 2, no. 4, pp. 235 – 253, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2468502X18300561

R. W. van der Heijden, T. Lukaseder, and F. Kargl, “Veremi: A dataset for comparable evaluation of misbehavior detection in vanets,” in Security and Privacy in Communication Networks, R. Beyah, B. Chang, Y. Li, and S. Zhu, Eds. Cham: Springer International Publishing, 2018, pp. 318–337.

S. Karagiorgou and D. Pfoser, “On vehicle tracking data-based road network generation,” 11 2012, pp. 89–98.

SUMO, “Sumo user documentation,” acessado em: 19 de abril de 2021. [Online]. Available: https://sumo.dlr.de/docs/

J. Harri, F. Filali, and C. Bonnet, “Mobility models for vehicular ad hoc networks: a survey and taxonomy,” IEEE Communications Surveys Tutorials, vol. 11, no. 4, pp. 19–41, Fourth 2009.

W. Pei, Y. Wu, S. Wang, L. Xiao, H. Jiang, and A. Qayoom, “Bvis: urban traffic visual analysis based on bus sparse trajectories,” Journal of Visualization, vol. 21, no. 5, pp. 873–883, 2018. [Online]. Available: https://doi.org/10.1007/s12650-018-0489-z

X. Shi, Z. Yu, J. Chen, H. Xu, and F. Lin, “The visual analysis of flow pattern for public bicycle system,” Journal of Visual

Languages Computing, vol. 45, pp. 51 – 60, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1045926X1630146X

Google, “Firebase realtime database,” acessado em: 12 de Abril de 2021. [Online]. Available: https://firebase.google.com/docs/database

——, “Plataforma do google maps: Documentac¸ ˜ao,” acessado em: 12 de Abril de 2021. [Online]. Available:

https://developers.google.com/maps/documentation?hl=pt-br

C. M. de Catanduva, “Dados gerais da cidade de catanduva/sp,” 2019, dispon´ıvel em: http://www.catanduva.sp.leg.br/o-municipio/dadosgerais.

I. de Pesquisa Econˆomica Aplicada, “Indicadores de mobilidade urbana da pnad 2012,” Fevereiro 2013, acessado

em: 16 de Julho de 2020. [Online]. Available: https://www.ipea.gov.br/portal/images/stories/PDFs/comunicado/131024

comunicadoipea161.pdf

Google, “Google maps,” acessado em: 12 de Abril de 2021. [Online]. Available: https://www.google.com.br/maps/preview

Waze, “Sobre o waze: conectando motoristas com mapas ao vivo,” acessado em: 12 de Abril de 2021. [Online]. Available: https://www.waze.com/pt-BR/about

Published

2021-06-29

How to Cite

Sanches Quessada, M., Lieira, D., Pereira, R., Gottsfritz, E., & Meneguette, R. (2021). Generation of Real Datasets for Network Simulation. IEEE Latin America Transactions, 100(XXX). Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/5458

Most read articles by the same author(s)