Multiobjective Optimization Techniques Applied to Three-Phase Transformers Designs

Optimization Techniques Applied to Three-Phase Transformers Designs

Authors

Keywords:

Differential Evolution, Distribution Power Transformer, Particle Swarm Optimization, Transient Magnetizing Current

Abstract

The aim of this research is to present the studies carried out to design three-phase core type distribution transformers, with the aid of optimization techniques. The minimization of losses is presented in two steps, first through the use of a mono-objective function, and second with the use of multi-objective function to minimize losses and the total mass of the active part of the transformer. The algorithms used are: Differential Evolution and Particle Swarm Optimization, their performances are compared through the results obtained. The main project parameters, such as core dimensions, total losses, no load current and the energizing current are estimated analytically through OCTAVE software. The analysis of magnetic flux density in the core is simulated using the Finite Element Method. Multiobjective optimization allows working with two or more conflicting objectives, and at each iteration, it stores the various non-dominant Pareto Front solutions, helping designers to choose the solution that best meets their needs. The results obtained with the mono-objective and multiobjective optimization techniques were interesting to minimize the losses and/or cost of the project

Downloads

Download data is not yet available.

Author Biographies

Adelicio Maximiano Sobrinho, Universidade Federal do Tocantins

Adelício M. Sobrinho é natural de Ituiutaba-MG, graduado em engenharia elétrica pela Universidade Estadual de Minas Gerais (UEMG) Campus Ituiutaba (1998), doutor (2019) em Ciências, pela Universidade Federal de Uberlândia (UFU). É professor adjunto III no colegiado da Engenharia Elétrica da Universidade Federal do Tocantins (UFT). Tem experiência em comissionamento e ensaios de equipamentos de subestações de energia elétrica.

José Roberto Camacho, Universidade Federal de Uberlândia (UFU)

José R. Camacho concluiu o doutorado em Engenharia Elétrica na University of Canterbury, Nova Zelândia em 1993. Atualmente, é professor titular da Universidade Federal de Uberlândia. Membro Senior do IEEE Institute of Electrical and Electronic Engineers. Atua na área de Engenharia Elétrica, com ênfase em Máquinas Elétricas, Dispositivos de Potência, Geração Distribuída, Fontes Alternativas de Energia para o meio rural.

Rafael Lima de Carvalho, Universidade Federal do Tocantins (UFT)

Rafael L. Carvalho possui graduação em Ciência da Computação pela Universidade Federal do Tocantins - UFT (2006), mestrado em Sistemas e Computação pelo Instituto Militar de Engenharia (2008) e doutorado em Engenharia de Sistemas e Computação pela Universidade Federal do Rio de Janeiro (2016). Atua como professor adjunto UFT, curso de ciência da computação.

Sergio Manuel Rivera Sanhueza, Universidade Federal do Tocantins (UFT)

Sergio M. R. Sanhueza é graduado em Engenharia Elétrica pela Universidade Federal de Mato Grosso do Sul (1998), Mestre (2002) e Doutor (2007) em Qualidade da Energia e Dinâmica de sistemas elétricos respectivamente. Atualmente é professor da Universidade Federal do Tocantins e suas linhas de pesquisa são tarifação de energia elétrica e impacto da geração distribuída no sistema de distribuição.

Stefani Carolline Leal de Freitas, Universidade Federal do Tocantins (UFT)

Stefani C. L. Freitas é Engenheira Eletricista pela Universidade do Estado de Minas Gerais - Campus da Fundação Educacional de Ituiutaba (2008). Mestre (2011) e Doutora (2014) em engenharia elétrica pela Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP – Faculdade de Engenharia de Ilha Solteira. Realizou estágio de doutoramento na Universidade do Minho - Portugal (2012). É professora no curso de bacharelado em Engenharia Elétrica da Universidade Federal do Tocantins - UFT - Campus de Palmas. Suas atividades consistem em pesquisas relacionadas à implementação de supressores de distorções harmônicas, dispositivos eletromagnéticos, sistemas de tarifação, transmissão e distribuição de energia.

References

A. E. Fitzgerald, C. Kingsley Jr. and S. D. Uman, “Transformers” in Electric Machinery, 6th ed. New York, NY, USA, McGraw-Hill Higher Education, 2013, ch. 2, pp. 57-104.

J. Faiz, B. M. Ebrahimi and T. Noori, "Three- and Two-Dimensional Finite-Element Computation of Inrush Current and Short-Circuit Electromagnetic Forces on Windings of a Three-Phase Core-Type Power Transformer," in IEEE Transactions on Magnetics, vol. 44, no. 5, pp. 590-597, May 2008, doi: 10.1109/TMAG.2008.917819.

S. Jazebi, F. de León and N. Wu, "Enhanced Analytical Method for the Calculation of the Maximum Inrush Currents of Single-Phase Power Transformers," in IEEE Transactions on Power Delivery, vol. 30, no. 6, pp. 2590-2599, Dec. 2015, doi: 10.1109/TPWRD.2015.2443560.

K. G. Upadhyay. “Conventional Design of machines” in Design of Electrical Machines. New Age International Publishers. New Delhi, India, 2008, ch. 3, sec. II, pp. 31-53. [5] R. Aghmasheh, V. Rashtchi and E. Rahimpour, "Gray Box Modeling of Power Transformer Windings Based on Design Geometry and Particle Swarm Optimization Algorithm," in IEEE Transactions on Power Delivery, vol. 33, no. 5, pp. 2384-2393, Oct. 2018, doi: 10.1109/TPWRD.2018.2808518. [6] J. Almansa Malagoli, J. R. Camacho, M. Valencia Ferreira da Luz, J. H. Inacio Ferreira and A. Maximiano Sobrinho, "Design of Three-Phase Induction Machine Using Differential Evolution Algorithm," in IEEE Latin America Transactions, vol. 13, no. 7, pp. 2202-2208, July 2015, doi: 10.1109/TLA.2015.7273778. [7] A. M. Sobrinho, J. Roberto Camacho, J. A Malagoli and A. C. F Mamede, "Analysis of the Maximum Inrush Current in the Otimal Design of a Single Phase Transformer," in IEEE Latin America Transactions, vol. 14, no. 12, pp. 4706-4713, Dec. 2016, doi: 10.1109/TLA.2016.7817001.

A. M. Sobrinho et al. Optimization of losses in a three-phase transformer design with inrush current analysis, Journal of Control, Automation and Electrical Systems, August 2018. DOI:10.1007/s40313-018-0413-8.

R. Yacamini and H. Bronzeado, Transformer inrush calculations using a coupled electromagnetic model. IET Journals Magazines, IEEE Proceedings - Science, Measurement and Technology, v. 141, n. 6, p. 491–498, 1994. DOI: 10.1049/ip-smt:19941450.

X. Ma, Y. Yu, X. Li, Y. Qi and Z. Zhu, "A Survey of Weight Vector Adjustment Methods for Decomposition-Based Multiobjective Evolutionary Algorithms," in IEEE Transactions on Evolutionary Computation, vol. 24, no. 4, pp. 634-649, Aug. 2020, doi: 10.1109/TEVC.2020.2978158.

S. E. Zirka, Y. I. Moroz, C. M. Arturi, N. Chiesa and H. K. Hoidalen, "Topology-Correct Reversible Transformer Model," in IEEE Transactions on Power Delivery, vol. 27, no. 4, pp. 2037-2045, Oct. 2012, doi:10.1109/TPWRD.2012.2205275.

Y. G. Petalas, K. E. Parsopoulos and M. N. Vrahatis. Memetic particle swarm optimization. Ann Oper Res 156, 99–127 (2007). DOI 10.1007/s10479-007-0224-y.

C. Blum and D. Merkle. “Swarm Intelligence in Optimization”, in Swarm Intelligence: Introduction and Applications. Natural Computing Series. Springer Berlin Heidelberg, 2008, pp. 43-86.

A. M. Sobrinho. “Uma Contribuição aos Projetos de Transformadores Via Algoritmos Naturais e Elementos Finitos”. Ph.D. dissertation Universidade Federal de Uberlândia, PPGEELT, Uberlândia-MG, 2019.

B. Jian, C. Chen, C. Lin and H. Yau, "Optimization Method of IR Thermography Facial Image Registration," in IEEE Access, vol. 7, pp. 93501-93510, 2019, doi: 10.1109/ACCESS.2019.2927747.

Z. -H. Zhan, Z. -J. Wang, H. Jin and J. Zhang, "Adaptive Distributed Differential Evolution," in IEEE Transactions on Cybernetics, vol. 50, no. 11, pp. 4633-4647, Nov. 2020, doi: 10.1109/TCYB.2019.2944873.

J. A. Malagoni. “Os Elementos Finitos no Estudo de Eletromagnetismo Utilizando os Software Gmsh/GetDP”. M.S. thesis, PPGEELT, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil, 2012.

Published

2021-07-21

How to Cite

Maximiano Sobrinho, A., Camacho, J. R., Lima de Carvalho, R. ., Rivera Sanhueza, S. M. ., & Leal de Freitas, S. C. . (2021). Multiobjective Optimization Techniques Applied to Three-Phase Transformers Designs : Optimization Techniques Applied to Three-Phase Transformers Designs . IEEE Latin America Transactions, 20(3), 386–394. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/5390