5G and Beyond: Past, Present and Future of the Mobile Communications
Keywords:
5G communications, Massive MIMO, beamforming, mmWave communications, mobile edge computing, small cell stations, NOMA, network slicingAbstract
The fifth-generation (5G) of mobile communications networks is emerging as a revolutionary technology that will accelerate the development of smart cities and the realization of the information society. This paper aims to provide an introduction to 5G for non-specialists, and a survey of this new technology for those already familiar with mobile communications, covering the conceptualization and the core technologies underpinning 5G networks. The paper also discusses the status of the commercial roll-out of 5G until 2020 from a worldwide perspective and gives a future view of mobile communications beyond 5G.
Downloads
References
R. W. Jones, “The global framework for radiocommunications,” ITU News, no. 3, pp. 29–31, Apr. 2006.
M.K.Roberts,M.A.Temple,R.F.Mills,andR.A.Raines,“Evolution of the air interface of cellular communications systems toward 4G realization,” IEEE Commun. Surveys Tuts., vol. 8, no. 1, pp. 2–23, 2006.
R. Baldemair et al., “Evolving wireless communications: Addressing the challenges and expectations of the future,” IEEE Veh. Technol. Mag., vol. 8, no. 1, pp. 24–30, 2013.
Global mobile Suppliers Association. 5G market: Snapshot september 2020. [Online]. Available: https://gsacom.com
GSMA Documents. 5G global launches & statistics. [On- line]. Available: https://www.gsma.com/futurenetworks/ip services/ understanding- 5g/5g- innovation/
Unión Internacional de Telecomunicaciones, Concepción de las IMT — Marco y objetivos generales del futuro desarrollo de las IMT para 2020 y en adelante. International Telecommunications Union– Radiocomunications Sector, Recommendation ITU-R M.2083-0, Sep. 2015.
Unión Internacional de Telecomunicaciones, Minimum requirements related to technical performance for IMT-2020 radio interface(s). International Telecommunications Union–Radiocomunications Sector, Report ITU-R M.2410-0, Nov. 2017.
M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201–1221, 2017.
A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli,“5G evolution: A view on 5G cellular technology beyond 3gpp release 15,” IEEE Access, vol. 7, pp. 127 639–127 651, 2019.
3rd Generation Partnership Project, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Release 15 Description; Summary of Rel-15 Work Items (Release 15). 3GPP– 3GPP TR 21.915 V15.0.0, Sep. 2019.
A. Gupta and R. K. Jha, “A survey of 5G network: Architecture and emerging technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015.
J. G. Andrews et al., “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, 2014.
M. A. Habibi, M. Nasimi, B. Han, and H. D. Schotten, “A comprehen- sive survey of RAN architectures toward 5G mobile communication system,” IEEE Access, vol. 7, pp. 70 371–70 421, 2019.
G. Marconi, “Wireless telegraphic communication – Nobel lecture,” NobelPrize.org. Nobel Media AB, pp. 1–27, Dec. 1909.
IEEE Communications Society, A Brief History of Communications. New Jersey: IEEE, 2002.
D. H. Ring, “Mobile telephony – Wide area coverage,” Bell Telephone Laboratories Inc., Murray Hill, NJ, USA, Tech. Rep., Dec. 1947, Internal Tech. Memo.
D. Raychaudhuri and N. B. Mandayam, “Frontiers of wireless and mobile communications,” Proc. IEEE, vol. 100, no. 4, pp. 824–840, 2012.
T. Halonen, J. Romero, and J. Melero, GSM, GPRS and EDGE Performance: Evolution towards 3G/UMTS, 2nd ed. John Wiley & Sons, Ltd, 2013.
P. Lescuyer, UMTS: origins, architecture and the standard. Science & Business Media, 2004. Springer
J. Lee et al., “LTE-advanced in 3GPP Rel -13/14: an evolution toward 5G,” IEEE Commun. Mag., vol. 54, no. 3, pp. 36–42, Mar. 2016.
B. Furht and S. A. Ahson, Long Term Evolution: 3GPP LTE radio and cellular technology. CRC Press, 2009.
B. A. Bjerke, “LTE-advanced and the evolution of LTE deployments,” IEEE Wireless Commun. Mag., vol. 18, no. 5, pp. 4–5, Oct. 2011.
Ericsson. Ericsson mobility report november 2020.[Online].Available: https://www.ericsson.com/en/mobility- report
Unio ́n Internacional de Telecomunicaciones, Future technology trends of terrestrial IMT systems. International Telecommunications Union– Radiocomunications Sector, Report ITU-R M.2320-0, Nov. 2014.
K. Liang, L. Zhao, X. Chu, and H. Chen, “An integrated architecture for software defined and virtualized radio access networks with fog computing,” IEEE Network, vol. 31, no. 1, pp. 80–87, 2017.
Y. Choi and N. Park, “Slice architecture for 5G core network,” in ICUFN, 2017, pp. 571–575.
C. H. T. Arteaga, A. Ordoñez, and O. M. C. Rendon, “Scalability and performance analysis in 5G core network slicing,” IEEE Access, vol. 8, pp. 142 086–142 100, 2020.
J. S. Orduz, G. D. Orozco, C. H. Tobar-Arteaga, and O. M. C. Rendon, “μvims: A finer-scalable architecture based on microservices,” in LCN), 2019, pp. 141–148.
Z. Sunetal.,“Building dynamic mapping with cups for next generation automotive edge computing,” in CloudNet, 2019, pp. 1–6.
H. Viswanathan and M. Weldon, “The past, present, and future of mobile communications,” Bell Labs Technical Journal, pp. 8–21, 2014.
T. S. Rappaport et al., “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, May 2013.
M. Shafi et al., “Microwave vs. millimeter-wave propagation channels: Key differences and impact on 5G cellular systems,” IEEE Commun. Mag., vol. 56, no. 12, pp. 14–20, Dec. 2018.
C. A. Gutierrez et al., “Doppler shift characterization of wideband mobile radio channels,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12 375–12 380, Dec. 2019.
K. Husenovic, I. Bedi, S. Maddens, I. Bozsoki, D. Daryabwite, N. Sundberg, M. Maniewicz et al., “Setting the scene for 5G: Opportu- nities & challenges,” International Telecommunications Union, vol. 56, 2018.
I. A. Rumyancev and A. S. Korotkov, “Survey on beamforming techniques and integrated circuits for 5G systems,” in EExPolytech, 2019, pp. 76–80.
I. Ahmed et al., “A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3060–3097, 2018.
T. Okuyama et al., “5G experimental trials of 4.5 GHz band digital beamforming in dense urban area,” in PIMRC, 2018, pp. 1130–1131.
S. Parkvall et al., “5G wireless access - trial concept and results,” in GLOBECOM, 2015, pp. 1–6.
D. C. Araujo et al., “Massive MIMO: survey and future research topics,” IET Communications, vol. 10, no. 15, pp. 1938–1946, 2016.
E. Bjornson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: Ten myths and one critical question,” IEEE Commun. Mag., vol. 54, no. 2, pp. 114–123, Feb. 2016.
M. A. Albreem, M. Juntti, and Shahabuddin, “Massive MIMO detection techniques: A survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3109–3132, 2019.
B. D. Van Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, 1988.
D. Hwang, S. S. Nam, and J. Yang, “Multi-antenna beamforming tech- niques in full-duplex and self-energy recycling systems: Opportunities and challenges,” IEEE Commun. Mag., vol. 55, no. 10, pp. 160–167, 2017.
O. El Ayach et al., “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wirel. Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
P. von Butovitsch et al., “Advanced antenna systems for 5G networks,” Ericsson White Paper GFMC-18:000530, pp. 1–15, 2018.
S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, “Power-domain non-orthogonal multiple access (noma) in 5G systems: Potentials and challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742, 2017.
L. Dai et al., “A survey of non-orthogonal multiple access for 5G,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2294–2323, 2018.
N. Mitton et al., “A tutorial on nonorthogonal multiple access for 5G and beyond,” Wireless Communications and Mobile Computing, vol. 2018, p. 9713450, 2018.
M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, and S. J. Johnson, “Grant-free non-orthogonal multiple access for iot: A survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1805–1838, 2020.
Y. Liu, G. Pan, H. Zhang, and M. Song, “On the capacity comparison between mimo-noma and mimo-oma,” IEEE Access, vol. 4, pp. 2123– 2129, 2016.
M. Zeng et al., “On the sum rate of MIMO-NOMA and MIMO-OMA systems,” IEEE Wireless Commun. Lett., vol. 6, no. 4, pp. 534–537, 2017.
B. Makki, K. Chitti, A. Behravan, and M. Alouini, “A survey of noma: Current status and open research challenges,” IEEE Open Journal of the Communications Society, vol. 1, pp. 179–189, 2020.
A. Abrol and R. K. Jha, “Power optimization in 5g networks: A step towards green communication,” IEEE Access, vol. 4, pp. 1355–1374, 2016.
Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green cellular networks: A survey, some research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 13, no. 4, pp. 524–540, 2011.
K. Chang, K. Chu, H. Wang, Y. Lin, and J. Pan, “Energy saving technology of 5g base station based on internet of things collaborative control,” IEEE Access, vol. 8, pp. 32 935–32 946, 2020.
A. Dataesatu, P. Boonsrimuang, K. Mori, and P. Boonsrimuang, “En- ergy efficiency enhancement in 5g heterogeneous cellular networks using system throughput based sleep control scheme,” in ICACT, 2020, pp. 549–553.
A.A. Barakabitze, A. Ahmad,R. Mijumbi, and A. Hines,“5Gnetwork slicing using sdn and nfv: A survey of taxonomy, architectures and future challenges,” Computer Networks, vol. 167, p. 106984, 2020.
X. Zhou, R. Li, T. Chen, and H. Zhang, “Network slicing as a service: enabling enterprises’ own software-defined cellular networks,” IEEE Commun. Mag., vol. 54, no. 7, pp. 146–153, 2016.
C. Campolo, A. Molinaro, A. Iera, and F. Menichella, “5G net- work slicing for vehicle-to-everything services,” IEEE Wireless Communications, vol. 24, no. 6, pp. 38–45, 2017.
I. Afolabi et al., “Network slicing and softwarization: A survey on principles, enabling technologies, and solutions,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2429–2453, 2018.
S. Ayoubi et al., “Machine learning for cognitive network manage- ment,” IEEE Commun. Mag., vol. 56, no. 1, pp. 158–165, 2018.
A. Mestres et al., “Knowledge-defined networking,” SIGCOMM Comput. Commun. Rev., vol. 47, no. 3, p. 2–10, sep 2017.
R. Boutaba et al., “A comprehensive survey on machine learning for networking: evolution, applications and research opportunities,” J. Internet Serv. Appl., vol. 9, no. 1, pp. 16:1–16:99, 2018.
N. C. Luong et al., “Applications of deep reinforcement learning in communications and networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3133–3174, 2019.
D. M. Casas-Velasco, O. M. C. Rendon, and N. L. S. da Fonseca, “Intelligent routing based on reinforcement learning for software- defined networking,” IEEE TNSM, pp. 1–1, 2020.
R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
Mausam and A. Kolobov, Planning with Markov Decision Processes. Morgan and Claypool, 2012.
C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292, 1992.
Y.-H. Wang, T.-H. S. Li, and C.-J. Lin, “Backward q-learning: The combination of sarsa algorithm and q-learning,” Engineering Applications of Artificial Intelligence, vol. 26, no. 9, pp. 2184–2193, 2013.
H. Li et al., “Deep reinforcement learning: Framework, applications, and embedded implementations,” in ICCAD, 2017, p. 847–854.
I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press Cambridge, 2016, vol. 1.
S. Amiri, S. Salimzadeh, and A. S. Z. Belloum, “A survey of scalable deep learning frameworks,” in eScience, 2019, pp. 650–651.
T. L. Fine, Feedforward neural network methodology. Springer Science & Business Media, 2006.
S. K. Sahu, P. Kumar, and A. P. Singh, “Dynamic routing using intercapsule routing protocol between capsules,” in UKSim-AMSS, 2018, pp. 1–5.
A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network,” Physica D: Nonlinear Phenomena, vol. 404, p. 132306, 2020.
F.A. Gers, J.A. Schmidhuber, and F.A. Cummins,“Learning to forget: Continual prediction with LSTM,” Neural Comput., vol. 12, no. 10, p. 2451–2471, Oct. 2000.
H. Lu and F. Yang, “A network traffic prediction model based on wavelet transformation and lstm network,” in IEEE ICSESS, 2018, pp. 1–4.
K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement learning: A proc. survey,” IEEE Signal Process. Mag., vol. 34, no. 6, pp. 26–38, 2017.
V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.
N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual history of programmable networks,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.
P. Lin et al., “A quick survey on selected approaches for preparing programmable networks,” in AINTEC, 2011, pp. 160–163.
Z. Shu and T. Taleb,“A novel qos framework for network slicing in 5G and beyond networks based on sdn and nfv,” IEEE Network, vol. 34, no. 3, pp. 256–263, 2020.
J.d.J. Gil Herrera and J.F.B. Vega,“Network functions virtualization: A survey,” IEEE LATAMT, vol. 14, no. 2, pp. 983–997, Feb 2016.
I. Afolabi et al., “Network slicing and softwarization: A survey on principles, enabling technologies, and solutions,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2429–2453, thirdquarter 2018.
D. Kreutz et al., “Software-defined networking: A comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.
B. A. A. Nunes et al., “A survey of software-defined networking: Past, present, and future of programmable networks,” IEEE Commun. Surveys Tuts., vol. 16, no. 3, pp. 1617–1634, Third 2014.
S. Bailey et al., “SDN architecture overview,” Open Network Foundation, 2013.
F. Estrada-Solano, A. Ordonez, L. Z. Granville, and O. M. C. Rendon, “A framework for SDN integrated management based on a CIM model and a vertical management plane,” Elsevier Computer Communications, vol. 102, pp. 150–164, 2017.
J. A. Wickboldt et al., “Software-defined networking: management requirements and challenges,” IEEE Commun. Mag., vol. 53, no. 1, pp. 278–285, 2015.
N. McKeown et al., “Openflow: enabling innovation in campus net- works,” ACM SIGCOMM Comp. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.
Tomas Cejka and Radek Krejci,“Configurationofopenvswitchusing of-config,” in NOMS, 2016, pp. 883–888.
C. Caba and J. Soler, “Apis for qos configuration in software defined networks,” in NetSoft, 2015, pp. 1–5.
B. Chatras, U. S. Tsang Kwong, and N. Bihannic, “Nfv enabling network slicing for 5G,” in ICIN, 2017, pp. 219–225.
K. Giotis, Y. Kryftis, and V. Maglaris, “Policy-based orchestration of nfv services in software-defined networks,” in NetSoft, 2015, pp. 1–5.
L. Mamatas, S. Clayman, and A. Galis, “A flexible information service for management of virtualized software-defined infrastructures,” Netw., vol. 26, no. 5, p. 396–418, Sep. 2016.
F. Bari et al., “Orchestrating virtualized network functions,” IEEE TNSM, vol. 13, no. 4, pp. 725–739, 2016.
ETSI GS NFV 002, “Network functions virtualization (NFV); architectural framework v1.1.1,” ETSI, Tech. Rep., October 2013.
S. R. Ali, Network Function Virtualization. Cham: Springer International Publishing, 2019, pp. 131–156.
B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization: Challenges and opportunities for innovations,” IEEE Commun. Mag., vol. 53, no. 2, pp. 90–97, 2015.
T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, 2017.
T. Taleb et al., “On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1657–1681, 2017.
C. Tselios and G. Tsolis, “On qoe-awareness through virtualized probes in 5G networks,” in CAMAD. IEEE, 2016, pp. 159–164.
S. Nunna et al., “Enabling real-time context-aware collaboration through 5G and mobile edge computing,” in ITNG. IEEE, 2015, pp. 601–605.
Y. C. Hu et al., “Mobile edge computing — a key technology towards 5G,” ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.
E. Baccarelli et al., “Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study,” IEEE Access, vol. 5, pp. 9882–9910, 2017.
M.H. Miraz, M. Ali, P.S. Excell, and R. Picking,“A review on internet of things (iot), internet of everything (ioe) and internet of nano things (iont),” in ITA, 2015, pp. 219–224.
IEEE-SA Standards Board, “IEEE standard for adoption of openfog reference architecture for fog computing,” IEEE Std 1934-2018, pp. 1–176, 2018.
J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A vision, architectural elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645 – 1660, 2013.
A. Brogi and S. Forti, “Qos-aware deployment of iot applications through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1185–1192, 2017.
R. Bruschi, F. Davoli, P. Lago, and J. F. Pajo, “A scalable sdn slicing scheme for multi-domain fog/cloud services,” in NetSoft, 2017, pp. 1–6.
M. Armbrust et al., “A view of cloud computing,” Commun. ACM, vol. 53, no. 4, p. 50–58, Apr. 2010.
X. He, Z. Ren, C. Shi, and J. Fang, “A novel load balancing strategy of software-defined cloud/fog networking in the internet of vehicles,” China Communications, vol. 13, no. Supplement2, pp. 140–149, 2016.
R. Jain and S. Paul, “Network virtualization and software defined networking for cloud computing: a survey,” IEEE Commun. Mag., vol. 51, no. 11, pp. 24–31, 2013.
D. Bendouda, A. Rachedi, and H. Haffaf, “An hybrid and proactive architecture based on sdn for internet of things,” in IWCMC, 2017, pp. 951–956.
Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff for fog computing networks with fog node cooperation,” in IEEE INFOCOM, 2017, pp. 1–9.
SPEEDTEST TM . Ookla 5G map. [Online]. Available: https: //www.speedtest.net/ookla- 5g- map
Huawei Technologies Co., “Green 5G: Bulding a sustainable world,” White paper, pp. 1–26, August 2020.
Informa Telecoms & Media Limited. 5G world map: A global breakdown of deployment. [Online]. Available: https://tmt.knect365.com/5gworldevent/5g- world- map- a- global- breakdown- of- deployment- blog/
GSMA Latin America, “Infrastructure deployment in latin america,” GSMA Documents, 2015. [Online]. Available: https://www.gsma.com/ latinamerica/infrastructure- deployment- in- latin- america/
GSM Association, “The mobile economy latin america 2019,” GSMA Documents, pp. 1–52, 2019. [Online]. Available: http: //www.gsma.com/
D. H. Gultekin and P. H. Siegel, “Absorption of 5g radiation in brain tissue as a function of frequency, power and time,” IEEE Access, vol. 8, pp. 115 593–115 612, 2020.
L. Hardell and M. Carlberg, “Health risks from radiofrequency radia- tion, including 5g, should be assessed by experts with no conflicts of interest,” Oncology Letters, vol. 20, no. 4, pp. 1–11, 2020.
A. Fehske, G. Fettweis, J. Malmodin, and G. Biczok, “The global footprint of mobile communications: The ecological and economic perspective,” IEEE Commun. Mag., vol. 49, no. 8, pp. 55–62, 2011.
M. Simko and M. Mattsson, “5g wireless communication and health effects—a pragmatic review based on available studies regarding 6 to 100 ghz,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, 2019.
Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng, and R. Schober, “An overview of sustainable green 5g networks,” IEEE Wirel. Commun., vol. 24, no. 4, pp. 72–80, 2017.
A. Bohli and R. Bouallegue, “How to meet increased capacities by future green 5g networks: A survey,” IEEE Access, vol. 7, pp. 42 220– 42 237, 2019.
C. Del-Valle-Soto, L. J. Valdivia, R. Velazquez, L. Rizo-Dominguez, and J.-C. Lopez-Pimentel, “Smart campus: An experimental perfor- mance comparison of collaborative and cooperative schemes for wire- less sensor network,” Energies, vol. 12, no. 16, 2019.
G. Fettweis, “The tactile internet: Applications and challenges,” IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 64–70, Mar. 2014.
Y. Huo, P. T. Kovacs, T. J. Naughton, and L. Hanzo, “Wireless holographic image communications relying on unequal error protected bitplanes,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7136–7148, Aug. 2017.
International Telecommunications Union. (2019,) Focus group on technologies for network 2030. [Online]. Available: https://www.itu. int/en/ITU- T/focusgroups/net2030/
E. Calvanese Strinati et al., “6G the next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 42–50, Sep. 2019.
Z. Zhang et al., “6G wireless networks: Vision, requirements, architec- ture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, Sep. 2019.
H.-C. Yang and M.-S. Alouini, “Data-oriented transmission in future wireless systems: Toward trustworthy support of advanced Internet of things,” IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 78–83, Sep. 2019.
B. Zong et al., “6G technologies: Key drivers, core requirements, system architectures, and enabling technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 18–27, Sep. 2019.
M. Elsayed and M. Erol-Kantarci, “AI-enabled future wireless net- works: Challenges, opportunities, and open issues,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 70–77, Sep. 2019.