Analysis of Local Trajectory Planners for Mobile Robot with Robot Operating System

Authors

Keywords:

global planner, local planner, mobile robotics, navigation, ROS, turtlebot

Abstract

The goal of this work is to analyze and compare trajectory planners for a mobile robot in Robot Operating System (ROS), focusing on the performance of local planners on symmetric and asymmetric environments. In addition, two global planners, Dijkstra and A-star, are implemented in order to have a complete analysis and comprehension of the navigation architecture. Two local planning algorithms, Dynamic Window Approach and Timed Elastic Bands, are analyzed and compared more in depth using the mobile robot TurtleBot 3 Burger, an open-source and low-cost platform. The analyzed criteria were geometric and angular precision of the final position and orientation, time and distance of the complete trajectory, and usage of computational power. Experiments were carried out in two environments with different spatial arrangement of obstacles, with the intention of analyzing the behavior both in simulation with the Gazebo software and in the real robot. Both local planning algorithms enabled the robot to reach the target destination without any collisions, presenting the main difference in the usage of processing power.

Downloads

Download data is not yet available.

Author Biographies

Fabio Ugalde Pereira, Universidade Federal de Santa Maria

Cursa Engenharia de Controle e Automação na Universidade Federal de Santa Maria. Fez intercâmbio acadêmico para a University of Southern California (2015-2016) focado em sistemas aeroespaciais e software para engenharia.

Pedro Medeiros de Assis Brasil, Universidade Federal de Santa Maria - UFSM

Cursa Engenharia de Controle e Automação pela Universidade Federal de Santa Maria. Atualmente faz estágio na empresa WEG S.A. na área de Tecnologia da Informação.

Marco Antonio de Souza Leite Cuadros, Instituto Federal do Espirito Santo - IFES

Possui graduação em Engenharia Elétrica - Universidad Nacional del Centro del Perú (1998), mestrado em Engenharia Elétrica pela Universidade Federal do Espírito Santo (2004) e doutorado em Engenharia Elétrica pela Universidade Federal do Espírito Santo (2011).Professor Titular do Insituto Federal do Espirito Santos (IFES).

Anselmo Rafael Cukla, Universidade Federal de Santa Maria - UFSM

É Engenheiro Eletrônico pela UNaM (2010), Mestre (2012) e Doutor (2016) em Engenharia Mecânica pela UFRGS. Fez ainda um Doutorado em regime de cotutela na Universidade Nova de Lisboa (UNINOVA), Portugal (2016). Atualmente é professor no DPEE, na UFSM, Brasil.

Paulo Drews Junior, Universidade Federal do Rio Grande - FURG

Doutor e mestre em Ciência da Computação pela UFMG em visão computacional e robótica. Engenheiro de Computação pela FURG. É professor adjunto da FURG e Coordenador de Planejamento da Unidade Embrapii iTec/FURG em Sistemas Robóticos e Automação.

Daniel Fernando Tello Gamarra, niversidade Federal de Santa Maria - UFSM

Possui graduação em Engenharia Mecánica- Universidad Nacional Del Centro Del Perú (1998), e mestrado em Engenharia Elétrica pela Universidade Federal do Espírito Santo (2004), mestrado em Informática pela Sussex University (2006) na Inglaterra, Doutorado em Informatica pela Scuola Superiore Sant´Anna em Pisa Italia (2009).

References

M. Pittner, M. Hiller, F. Particke, L. Patino-Studencki, and J. Thielecke, “Systematic Analysis of Global and Local Planners for Optimal Trajectory Planning,” in ISR 2018; 50th International Symposium on Robotics, Jun. 2018, pp. 1–4.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33, Mar. 1997, doi: 10.1109/100.580977.

C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram, “Trajectory modification considering dynamic constraints of autonomous robots,” in ROBOTIK 2012; 7th German Conference on Robotics, May 2012, pp. 1–6.

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959, doi: 10.1007/BF01386390.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” IEEE Trans. Syst. Sci. Cybern., vol. 4, no. 2, pp. 100–107, Jul. 1968, doi: 10.1109/TSSC.1968.300136.

F. L. L. Medeiros and J. D. S. Silva, “Aplicação de Algoritmo Dijkstra ao Planejamento de Movimento de VANTs,” São José dos Campos - SP, 2010, p. 8.

Z. Zhang and Z. Zhao, “A Multiple Mobile Robots Path planning Algorithm Based on A-star and Dijkstra Algorithm,” Int. J. Smart Home, vol. 8, pp. 75–86, May 2014, doi: 10.14257/ijsh.2014.8.3.07.

A. R. Fonseca, “Composição de Mapas Planares e Planejamento de Rotas Aplicados à Navegação de Robôs Móveis e Linhas de Transmissão,” Master’s Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, 2006.

M. M. Brugnolli, G. C. Lopes, and M. A. D. Lemos, “Uma Solução Híbrida Para Navegação e Desvio De Obstáculos Baseada No Algoritmo Dijkstra E Lógica Fuzzy,” Olimpo Sorocaba, p. 6, 2013.

O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in 1985 IEEE International Conference on Robotics and Automation Proceedings, Mar. 1985, vol. 2, pp. 500–505. doi: 10.1109/ROBOT.1985.1087247.

J. Borenstein and Y. Koren, “High-speed obstacle avoidance for mobile robots,” in Proceedings IEEE International Symposium on Intelligent Control 1988, Aug. 1988, pp. 382–384. doi: 10.1109/ISIC.1988.65461.

F. Pimentel and P. Aquino, “Performance Evaluation of ROS Local Trajectory Planning Algorithms to Social Navigation,” in 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE), Oct. 2019, pp. 156–161. doi: 10.1109/LARS-SBR-WRE48964.2019.00035.

M. Fernandez Carmona, T. Parekh, and M. Hanheide, “Making the Case for Human-Aware Navigation in Warehouses,” in Towards Autonomous Robotic Systems, vol. 11650, K. Althoefer, J. Konstantinova, and K. Zhang, Eds. Cham: Springer International Publishing, 2019, pp. 449–453. doi: 10.1007/978-3-030-25332-5_38.

H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I,” IEEE Robot. Autom. Mag., vol. 13, no. 2, pp. 99–110, Jun. 2006, doi: 10.1109/MRA.2006.1638022.

I. Naotunna and T. Wongratanaphisan, “Comparison of ROS Local Planners with Differential Drive Heavy Robotic System,” in 2020 International Conference on Advanced Mechatronic Systems (ICAMechS), Dec. 2020, pp. 1–6. doi: 10.1109/ICAMechS49982.2020.9310123.

B. Cybulski, A. Wegierska, and G. Granosik, “Accuracy comparison of navigation local planners on ROS-based mobile robot,” in 2019 12th International Workshop on Robot Motion and Control (RoMoCo), Jul. 2019, pp. 104–111. doi: 10.1109/RoMoCo.2019.8787346.

K. Zheng, “ROS Navigation Tuning Guide,” arXiv:1706.09068, p. 23, 2016.

J. Wen et al., “MRPB 1.0: A Unified Benchmark for the Evaluation of Mobile Robot Local Planning Approaches,” ArXiv201100491 Cs, Nov. 2020, Accessed: Mar. 07, 2021. [Online]. Available: http://arxiv.org/abs/2011.00491

P. Marin-Plaza, A. Hussein, D. Martin, and A. de la Escalera, “Global and Local Path Planning Study in a ROS-Based Research Platform for Autonomous Vehicles,” Journal of Advanced Transportation, Feb. 22, 2018.

A. R. Cukla, R. C. Izquierdo, F. A. Borges, E. A. Perondi, and F. J. Lorini, “Optimum Cascade Control Tuning of a Hydraulic Actuator Based on Firefly Metaheuristic Algorithm,” IEEE Lat. Am. Trans., vol. 16, no. 2, pp. 384–390, Feb. 2018, doi: 10.1109/TLA.2018.8327390.

D. F. T. Gamarra, A. P. Legg, M. A. de S. L. Cuadros, and E. S. da Silva, “Sensory Integration of a Mobile Robot Using the Embedded System Odroid-XU4 and ROS,” in 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE), Oct. 2019, pp. 198–203. doi: 10.1109/LARS-SBR-WRE48964.2019.00042.

J. C. Jesus, J. A. Bottega, M. A. S. L. Cuadros, and D. F. T. Gamarra, “Deep Deterministic Policy Gradient for Navigation of Mobile Robots in Simulated Environments,” in 2019 19th International Conference on Advanced Robotics (ICAR), Dec. 2019, pp. 362–367. doi: 10.1109/ICAR46387.2019.8981638.

S. Quinlan and O. Khatib, “Elastic bands: connecting path planning and control,” in [1993] Proceedings IEEE International Conference on Robotics and Automation, May 1993, pp. 802–807 vol.2. doi: 10.1109/ROBOT.1993.291936.

“gmapping - ROS Wiki.” http://wiki.ros.org/gmapping (accessed Jun. 11, 2020).

C. Fairchild and Dr. T. L. Harman, ROS Robotics by Example, Second. Livery Place, 25 Livery Street, Birmingham B3 2PB, UK: Packt Publishing.

“ROS.org | About ROS.” https://www.ros.org/about-ros/ (accessed May 08, 2020).

“DYNAMIXEL SYSTEMS - TurtleBot 3 - ROBOTIS.” https://www.robotis.us/turtlebot-3/ (accessed Apr. 07, 2020).

“Gazebo.” http://www.gazebosim.org/ (accessed Mar. 21, 2020).

“rviz - ROS Wiki.” http://wiki.ros.org/rviz (accessed Apr. 16, 2020).

D. H. D. Reis, D. Welfer, M. A. D. S. L. Cuadros, and D. F. T. Gamarra, “Mobile Robot Navigation Using an Object Recognition Software with RGBD Images and the YOLO Algorithm,” Appl. Artif. Intell., vol. 33, no. 14, pp. 1290–1305, Dec. 2019, doi: 10.1080/08839514.2019.1684778.

“Github repository with simulation worlds.” https://github.com/fupbot/sym_asym_maps (accessed May 31, 2020).

P. M. de Assis Brasil, F. U. Pereira, M. A. de Souza Leite Cuadros, A. R. Cukla, and D. F. Tello Gamarra, “A Study on Global Path Planners Algorithms for the Simulated TurtleBot 3 Robot in ROS,” in 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), Nov. 2020, pp. 1–6. doi: 10.1109/LARS/SBR/WRE51543.2020.9307003.

P. M. de Assis Brasil, F. U. Pereira, M. A. de Souza Leite Cuadros, A. R. Cukla, and D. F. T. Gamarra, “Dijkstra and A* Algorithms for Global Trajectory Planning in the TurtleBot 3 Mobile Robot,” in Intelligent Systems Design and Applications, Cham, 2021, pp. 346–356.

Published

2021-08-24

How to Cite

Ugalde Pereira, F., Medeiros de Assis Brasil, P., de Souza Leite Cuadros, M. A., Cukla, A. R., Drews Junior, P., & Tello Gamarra, D. F. (2021). Analysis of Local Trajectory Planners for Mobile Robot with Robot Operating System. IEEE Latin America Transactions, 100(XXX). Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/5108