Contextual Information Based Community Detection in Attributed Heterogeneous Networks

Authors

  • Márcio V Dias Instituto Militar de Engenharia
  • Paulo Alves Braz Instituto Militar de Engenharia
  • Eduardo Bezerra Silva Centro de Educação Tecnológica (CEFET / RJ)
  • Ronaldo Ribeiro Goldschmidt Instituto Militar de Engenharia

Keywords:

Gráficos Atribuídos, Community Detection, Data Clustering, Heterogeneous Networks, Attributed Graphs

Abstract

Community detection is an important network
analysis task that has been studied by academy and industry for
the last years. Community detection algorithms try to maximize
the number of connections in each community and minimize the
number of connections between different communities. Some of
them consider not only the topological aspects of the networks
but also try to explore existing information about the context of
the application available in attributes of nodes and/or connections
in order to find cohesive content communities. Those algorithms
were designed to run exclusively over homogeneous networks
and cannot deal with heterogeneous structures. Nevertheless,
typical real-world networks are heterogeneous. Thus, this article
proposes ComDet, a community detection approach that fills this
gap by taking into account topological and contextual information
to detect communities in heterogeneous networks. The proposed
approach uses data clustering as a pre-processing step for the
community detection process in order to identify similar nodes
that are directly or indirectly linked and organize them in
cohesive and possibly overlapping communities. Experiments in
three attributed heterogeneous networks show that ComDet leads
to interesting partitions with cohesive content communities

Downloads

Download data is not yet available.

Author Biographies

Márcio V Dias, Instituto Militar de Engenharia

M. Dias was born in Rio de Janeiro, RJ, BRA in
1984. He received a bachelor's degree in Engineering
Computing from the State University of Rio de
January (UERJ), Rio de Janeiro in 2013 and M. Sc.
at the Military Engineering Institute (IME) in 2016.
He has been working with software engineering since 2001.

Paulo Alves Braz, Instituto Militar de Engenharia

P. A. Braz Paulo Alves Braz nasceu no Rio de Janeiro,
RJ, BRA em 1981. Ele recebeu o bacharelado
em Ciência da Computação da Universidade Federal
do Rio de Janeiro (UFRJ), no Rio de Janeiro, em
2009. De 2009 a 2016, foi gerente sênior de dados
de perfuração na Halliburton. Atualmente cursa o
mestrado em Sistemas e Computação no Instituto
Militar de Engenharia (IME)

Eduardo Bezerra Silva, Centro de Educação Tecnológica (CEFET / RJ)

E. Bezerra Eduardo Bezerra recebeu seu bacharelado
em Informática pela Universidade Federal do
Rio de Janeiro (1992-1995). Ele tem ambos M.Sc.
e D.Sc. em Computação e Engenharia de Sistemas
pela COPPE/UFRJ. Trabalha como professor no
Centro Federal de Educação Tecnológica do Rio
de Janeiro (CEFET/RJ). Seus interesses de pesquisa
estão relacionados a aplicações práticas de Aprendizado
de Máquina

Ronaldo Ribeiro Goldschmidt, Instituto Militar de Engenharia

R. R. Goldschmidt recebeu seu bacharelado em
Matemática pela Universidade Federal Fluminense
(1990), o M.Sc. em Sistemas de Computação pelo
Instituto Militar de Engenharia (1992) e o D.Sc.
em Engenharia Elétrica pela Pontifica Universidade
Católica do Rio de Janeiro (2004). Atualmente trabalha
como professor associado ao Instituto Militar
de Engenharia e seus interesses de pesquisa incluem
Ciência de Dados e Inteligência Artificial.

Published

2019-10-03

How to Cite

Dias, M. V., Braz, P. A., Silva, E. B., & Goldschmidt, R. R. (2019). Contextual Information Based Community Detection in Attributed Heterogeneous Networks. IEEE Latin America Transactions, 17(2), 236–244. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/496

Most read articles by the same author(s)