A Novel Hybrid (PID + MRAC) Adaptive Controller for an Air Levitation System

Authors

  • Marcelo Henrique Souza Bomfim Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal de Minas Gerais (PPGMEC/UFMG) https://orcid.org/0000-0002-0263-6075
  • Eduardo José Lima II Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal de Minas Gerais (PPGMEC/UFMG) https://orcid.org/0000-0002-0089-5743
  • Neemias Silva Monteiro Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais https://orcid.org/0000-0002-5631-9008
  • André Lage Almeida Dias Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais https://orcid.org/0000-0001-6089-9685

Keywords:

adaptive controller, air levitation system, HMRAC, Lyapunov function

Abstract

The air levitation system belongs to a class of systems with fast dynamics and low damping. Such characteristics make the plant intrinsically unstable and respond in a non-linear form. Thus, it is prohibitive to use classic control techniques, such as the PID (Proportional-Integral-Derivative) controller, to track the position of the sphere. The control system must be able to compensate the non-linearities, high oscillation and reject disturbances. Thus, this research proposes to create a new approach for the hybrid controller (PID + MRAC) present in the literature. The topological character of the proposed MRAC (Model Reference Adaptive Controller) consists of three parts: a feedforward controller, a derivative portion and an ordinary feedback. The feedforward portion has the purpose of rejecting undesirable disturbances. The derivative portion increases the stability of the system and the ordinary feedback makes the error null in steady state. Due to the convergence time of the adjustment parameters, MRAC performs poorly during reference changes and in the rejection of disturbances. Thus, it is common practice to use the MRAC with the PID controller. In its methodological aspect, the control law was created from Lyapunov's theory, with the purpose of ensuring asymptotic stability for the system. As a result, the proposed controller (Hybrid-MRAC or H-MRAC) showed better results than a literature reference (A-PID), in terms of mean absolute (MAE), mean square (MSE) and root mean square (RMSE) errors. In MAE simulations it was 51,25% lower on average, MSE was 51,65% and RMSE 31,40%. In the experiments, the MAE was on average 19,72% lower, the MSE 42,92% and the RMSE 18,58%.

Downloads

Download data is not yet available.

Author Biographies

Marcelo Henrique Souza Bomfim, Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal de Minas Gerais (PPGMEC/UFMG)

Possui graduação em Engenharia Mecânica (2009) e mestrado em Engenharia Mecânica (2013) pela Universidade Federal de Minas Gerais. Atualmente é aluno de doutorado da mesma instituição e professor do Instituto Federal de Minas Gerais/Campus Congonhas. Possui experiência no desenvolvimento de sistemas de controle adaptativos para dispositivos mecatrônicos.

Eduardo José Lima II, Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal de Minas Gerais (PPGMEC/UFMG)

Possui graduação em Engenharia Mecânica com ênfase em Mecatrônica (2000) pela Pontifícia Universidade Católica de Minas Gerais, mestrado em Engenharia Elétrica pela Universidade Federal da Bahia (2002) e doutorado em Engenharia Mecânica pela Universidade Federal de Minas Gerais (2006). Atualmente é professor da Universidade Federal de Minas Gerais. Tem experiência na área de automação da soldagem, atuando principalmente nos seguintes temas: retrofitting de robôs, desenvolvimento de sistemas mecatrônicos, visão computacional e redes neurais artificiais aplicadas à soldagem e controle de sistemas a eventos discretos através de redes de Petri.

Neemias Silva Monteiro, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais

Possui graduação em Engenharia de Controle e Automação pela Universidade Federal de Itajubá (2015) e mestrado em Engenharia Elétrica pela Universidade Federal de Minas Gerais (2020). Atualmente é aluno de doutorado em Engenharia Elétrica na mesma instituição. Tem experiência na área de localização e planejamento de movimento de robôs, e com processos de decisão markovianos.

André Lage Almeida Dias, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais

Possui graduação em Engenharia Elétrica pela Universidade Federal de Ouro Preto com ênfase em Sistemas Elétricos de Potência (2019). Atualmente é aluno de mestrado em Engenharia Elétrica na Universidade Federal de Minas Gerais na linha de pesquisa Eletrônica de Potência e atua como Instrutor de Formação Profissional na Federação das Indústrias do Estado de Minas Gerais, no segmento Eletroeletrônica e Automação Industrial. Possui experiência com eletrônica de potência e microcontroladores.

References

M. A. Andrade, F. Buiochi, and J. C. Adamowski, “Finite element

analysis and optimization of a single-axis acoustic levitator,” IEEE transactions

on ultrasonics, ferroelectrics, and frequency control, vol. 57,

no. 2, pp. 469–479, 2010.

D. Ilssar, I. Bucher, and H. Flashner, “Modeling and closed loop control

of near-field acoustically levitated objects,” Mechanical Systems and

Signal Processing, vol. 85, pp. 367–381, 2017.

M. A. Andrade, N. Perez, F. Buiochi, and J. C. Adamowski, “Matrix

method for acoustic levitation simulation,” IEEE transactions on ultrasonics,

ferroelectrics, and frequency control, vol. 58, no. 8, pp. 1674–1683,

P. A. Q. Assis and R. K. H. Galvao, “Sliding mode predictive control of

a magnetic levitation system employing multi-parametric programming,”

IEEE Latin America Transactions, vol. 15, no. 2, pp. 239–248, 2017.

B. Singh and V. Kumar, “A real time application of model reference

adaptive pid controller for magnetic levitation system,” in

IEEE Power, Communication and Information Technology Conference

(PCITC). IEEE, 2015, pp. 583–588.

L. H. Torres, L. Schnitman, C. Junior, and J. F. de Souza, “Feedback

linearization and model reference adaptive control of a magnetic levitation

system,” Studies in Informatics and Control, vol. 21, no. 1, pp.

–74, 2012.

L. E. Venghi, G. N. Gonzalez, and F. M. Serra, “Implementation

and control of a magnetic levitation system,” IEEE Latin America

Transactions, vol. 14, no. 6, pp. 2651–2656, 2016.

J. Zhang, X. Wang, and X. Shao, “Design and real-time implementation

of takagi–sugeno fuzzy controller for magnetic levitation ball system,”

IEEE Access, vol. 8, pp. 38 221–38 228, 2020.

C. Caro and N. Quijano, “Low cost experiment for control systems,” in

IX Latin American Robotics Symposium and IEEE Colombian Conference

on Automatic Control,. IEEE, 2011, pp. 1–6.

J. Chac´on, H. Vargas, S. Dormido, and J. S´anchez, “Experimental

study of nonlinear pid controllers in an air levitation system,” IFACPapersOnLine,

vol. 51, no. 4, pp. 304–309, 2018.

D. Chaos, J. Chacon, E. Aranda-Escol´astico, and S. Dormido, “Robust

switched control of an air levitation system with minimum sensing,” ISA

transactions, vol. 96, pp. 327–336, 2020.

E. Chołodowicz and P. Orłowski, “Low-cost air levitation laboratory

stand using matlab/simulink and arduino,” Pomiary Automatyka Robotyka,

vol. 21, 2017.

L. dos Santos Coelho and M. W. Pessˆoa, “Nonlinear model identification

of an experimental ball-and-tube system using a genetic programming

approach,” Mechanical Systems and Signal Processing, vol. 23, no. 5,

pp. 1434–1446, 2009.

L. Herrmann and M. Broecker, “Flatness based control of a ball in tube

system,” IFAC-PapersOnLine, vol. 48, no. 1, pp. 790–795, 2015.

G. Liauˇcius, V. Kaminskas, and R. Liutkeviˇcius, “Digital self-tuning

pid control of pressure plant with closed-loop optimization. information

technology and control,” Information Technology and Control, vol. 40,

no. 3, pp. 202–209, 2011.

G. Liauˇcius, V. Kaminskas, T. Krilaviˇcius, A. L. Telksnys, J. Augutis,

G. Dzemyda, H. Praneviˇcius, E. K. Zavadskas, G. Raˇskinis, and

R. ˇ Seinauskas, “Digital self-tuning control of pressure plant,” Tese de

doutorado, Vytauto Didˇziojo universitetas, 2014.

R. Masoudi, S. Yousefizadeh, P. Hajiani, and J. Zarei, “Position control

of two balls in two interconnected vertical tubes using controlled dc fans

and sliding mode control,” in International Conference on Mechatronics

and Control (ICMC). IEEE, 2014, pp. 1629–1633.

O. Ziwei, S. Michael, andW. Kexin, “The experiment “ball-in-tube” with

fuzzy-pid controller based on dspace,” in IEEE International Conference

on Systems, Man and Cybernetics. IEEE, 2007, pp. 877–881.

R. C. Dorf and R. H. Bishop, Modern control systems. Pearson, 2011.

N. J. Nilsson, Principles of artificial intelligence. Morgan Kaufmann,

G. Liauˇcius and V. Kaminskas, “The independent fuzzy control with

correction of two dimensional process,” in Electrical and control technologies:

proceedings of the 4th international conference on electrical

and control technologies, Kaunas, Lithuania. Kaunas: Technologija, 4,

D. Zhang and B. Wei, “Design, analysis and modelling of a hybrid

controller for serial robotic manipulators,” Robotica, vol. 35, no. 9, pp.

–1905, 2017.

L. E. G. Castanon, A. V. Martinez, and R. C. Reynoso, “Mrac-based

fault tolerant control of a siso real process application,” IEEE Latin

America Transactions, vol. 13, no. 8, pp. 2545–2550, 2015.

K. J. A° stro¨m and B. Wittenmark, “Adaptive control. mineola,” 2008.

H. K. Khalil and J. W. Grizzle, Nonlinear systems. Prentice hall Upper

Saddle River, NJ, 2002, vol. 3.

M. Vidyasagar, Nonlinear systems analysis. SIAM, 2002.

L. A. Aguirre, Introduc¸ ˜ao `a identificac¸ ˜ao de sistemas: t´ecnicas lineares

e n˜ao lineares aplicadas a sistemas reais. Editora da UFMG. 3ª edic¸ ˜ao,

V. H. Haendel, A. B. Fontes, J. S. Lima, and M. O. Sobrinho, “T´ecnicas

de identificac¸ ˜ao em malha fechada usando o algoritmo vari´avel instrumental:

Um estudo de caso,” in Simp´osio Brasileiro de Automac¸ ˜ao

Inteligente - SBAI, 2013.

S. Kay, Intuitive probability and random processes using MATLAB®.

Springer Science & Business Media, 2006.

M. M. Mukaka, “A guide to appropriate use of correlation coefficient in

medical research,” Malawi medical journal, vol. 24, no. 3, pp. 69–71,

R. Pal, Predictive modeling of drug sensitivity. Academic Press, 2016.

Published

2021-03-19

How to Cite

Bomfim, M. H. S., Lima II, E. J., Monteiro, N. S., & Dias, A. L. A. (2021). A Novel Hybrid (PID + MRAC) Adaptive Controller for an Air Levitation System. IEEE Latin America Transactions, 19(8), 1400–1409. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/4655