Methodology of measurement of the opening and coverage of the canopy implementing artificial vision techniques



Digital Images, Gray-Scale, Artificial Vision, Spherical Densiometer, Forest Canopy, Thresholding, Rotation Vector Sensor


The Spherical Densiometer is a method of measuring the luminosity present inside the forest ecosystem. This information is essential to know the probability of survival and growth of seedlings; it also allows the estimation of the establishment and development of plants in the understory. This indirect measurement method is considered to be of acceptable efficiency, however, it presents complexity of operability in its application, generating an exposure of the researcher to long periods of solar radiation, physical wear and risks of interaction with wildlife, besides maintaining a variability due to subjectivity and overestimation due to the wide angle of vision and interpretation of the user. In order to obtain samples, it is necessary to have a guidance system, stabilization indicator and a system for recording the results. In the development of this research, a methodology is proposed for the measurement of the opening and coverage of the light environment under the forest canopy, using artificial vision techniques such as image processing in mobile devices. At the same time, the sensors integrated in the device are used to guarantee stabilization and orientation, including the persistent storage of data. As a result of the comparison between the two methods, the proposed methodology demonstrates a 73.49% reduction in canopy measurement times, reducing user exposure to the extreme conditions present in the ecosystem, eliminating subjectivity and overestimation of the results obtained.

Author Biographies

Manuel Matuz-Cruz, TecNM-Campus Tapachula

M.C. Manuel Matuz-Cruz is a professor in the Department of Systems and Computing at the TecNM Campus Tapachula, Master of Science at CENIDET/TecNM, Master of Management in Information and Communication Technologies at the TecMilenio University.

Christian García, TecNM

Christian J. García-Aquino was born on Junuary 14, 1998, in Tapachula, Chiapas, Mexico. He recived the Engineering degree in Computer Systems from Tecnológico Nacional de México, Campus Tapachula, Chiapas, México, in 2020. While obtaining this degree, he was work with different artificial vision techniques.

Emanuel Reyes-Sánchez , TecNM-Campus Tapachula

Emanuel Reyes-Sanchez was born on November 12, 1996, in Tapachula, Chiapas, Mexico. He recived the Engineering degree in Computer Systems from Tecnológico Nacional de México, Campus Tapachula, Chiapas, México, in 2020. While obtaining this degree, he was work with different artificial vision techniques.

Dante Mújica-Vargas, TecNM-CENIDET

Ph.D. Dante Mújica-Vargas is a professor of the Computer Science Department of CENIDET/TecNM. He has published more than 15 papers in International Journals. He serves as active reviewer in Artificial Intelligence in Medicine, Journal of Visual Communication and Image Representation, Evolving Systems, IEEE Access, Transactions on Neural Networks and Learning Systems, Neurocomputing and Applied Soft Computing Journals.

Susana Maza-Villalobos Méndez, CONACyT-ECOSUR, Unidad Tapachula

Ph.D. Susana Maza-Villalobos is researcher in tropical ecology and environmental sciences. My research interests are community ecology, forest succession, restoration, forest management and conservation. Particularly, my interest is to understand how the environmental changes impact to forest and their recovery processes.


A. Promis, “Medición y estimación del ambiente lumínico en el interior del bosque”, Revista Chapingo, vol 19, No 1, pp. 139-146, febrero, 2013.

M. Aparecida, G. Salles, S. Marqués, and F. Costa, “Protocol for using the forest densiometer in RAPELD plots, Programa de Pesquisa em Biodiversidade, O Programa de Pesquisa em Biodiversidade”, Brasil, June 08, 2017. [Online]. Available: default/files/Forest_Densiometer_Protocol_RAPELD_Plots.pdf.

P. E. Lemmon, “A Spherical Densiometer For Estimating Forest Overstory Density” Forest Science, vol. 2, pp. 314-320, diciembre 1956.

P. E. Lemmon, “A new instrument for measuring forest overstory density,” Journal of Forestry, vol. 55, No 9, pp. 667-668, 1957.

ESIP¨Commons, “CanopyApp”. R. Dexter, A. Schloss, J. Pickle, C. Philip, December 11 2013.

A. Patrignani and T. E. Ochsner, “Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover”, Agronomy Journal, to be DOI: 10.2134/agronj15.0150.

Tichy, L. (2015). Field test of canopy cover estimation by hemispherical photographs taken with a smartphone. IAVS. doi:10.1111/jvs.12350.

R. Bei, S. Fuentes, M. Gilliham, S. Tyerman, E. Edwards, N. Bianchini, J. Smith, C. Collins, “VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine”, Australia, 2016.

OMS, PNUMA, OMM, and ICNIRP, “Índice UV solar mundial”, Organización Mundial de la Salud, ISBN: 9241590076, 2002.

D. Cabrelli, S. Rebottaro, y D. Effron, “Caracterización del dosel forestal y del microambiente lumínico en rodales con diferente manejo, utilizando fotografía hemisférica”, Quebracho, No. 13, pp. 17-25, December 2006.

P. A. Plateros, V. J. Reyes, A. Velázquez, P. Hernández, G. V. Campos, “Disponibilidad de luz bajo dosel en rodales de Abies religiosa”, Maderas y Bosques, to be DOI: 10.21829/YB.2018.2431711.

E. Gonzales, R. Sotolongo , “La luz como factor ecológico”, in Ecología Forestal, 2003, pp. 55-75. [Online]. Available:

A. Promis, G. Cruz, “Fotografía Hemisféricas: un método para estimar estructuras del dosel arbóreo e iluminación en el interior del bosque”, Bosque nativo, No 44, pp. 12-15, mayo de 2019.

S. B. Jennings, N. D. Brown & D. Sheil, “Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures”, Forestry, vol. 72, pp. 59-74, March 1999.

Sucar, L.-E. (2003). Procesamiento de imágenes y visión artificial: Cuernavaca, México: Instituto Tecnológico y de Estudios Superiores de Monterrey.

R. Gonzalez and R. Woods, Digital image processing, 3rd ed. New Delhi: Dorling Kindersley, 2007.

"Diseño de un Sistema de Visión Artificial para la Clasificación de Chirimoyas basado en medidas", Pontificia Universidad Católica de Perú, 2016. [Online], Available: http://tesis.puc handle/20.500.12404/7849 [Accesed: 10- Nov- 2019].

J. Tomás, A. Albiol, M. García, S. Santonja, Android Things y visión artificial, Barcelona IN, SPAIN: MARCOMBO, S.A., 2018, pp. 1- 118.

R. Meir, I. Laker, Professional Android, Indianapolis, IN, USA: John Wiley & Sons, Inc, 2018.

G. Milette, A. Stroud, Professional Android Sensor Programming, Indianapolis, IN, USA: John Wiley & Sons, Inc, 2012, pp. 65-102, 121-142.

“Como usar el sensor vectorial de rotación”, Developers 2019. [Online]:

“El Algebra y la geometría de los cuaternios y algunas de sus aplicaciones”, Universidad de Sonora, 2010. [Online], Available: [Accesed: 02- Sep- 2019].

“Cuaterniones y angulos de Euler para describir rotaciones en R^3” Universidad Abierta Interamericana, 2018. [Online], Available: [Accesed: 02- Sep- 2019].

"Color Conversions", OpenCV, 2019. [Online], Available: [Accessed: 20- Aug- 2019].

“Técnicas alternativas para la conversión de imágenes a color a escala de grises en el tratamiento digital de imágenes”, Research Gate, 2020. [Online], Available: 40_Tecnicas_alternativas_para_la_conversion_de_imagenes_a_color_a_escala_de_grises_en_el_tratamiento_digital_de_imagenes/link/55e0fadc08aede0b572fd210/download. [Accessed: 10 – Nov – 2020].

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.


Bookmark and Share