A High Resolution Image Based Approach for Estimating the Canopy Cover of a Semi-Deciduous Brazilian Atlantic Forest Fragment
Canopy cover by satellite image
Keywords:
Forest Canopy Cover Estimation, Forest Image Processing, Remote SensingAbstract
The Atlantic Forest in Brazil has been suffering natural and anthropic perturbations over the years, which has been impacting, qualitatively and quantitatively, with different degrees and intensities, its canopy cover. These perturbations can be caused by the selective cut of species, burning, natural death of trees, among several other factors, which act directly on the composition and the floristic diversity of fragments of the forest. The main motivation for conducting this work was to alert about the relevance of the Atlantic forest conservation and the need for a constant monitoring system to preserve what has been left of it. This can be partially achieved by permanently estimating its canopy cover. This paper describes the implementation and evaluation of the descriptors: energy, entropy, homogeneity, contrast and the sum of the high-frequency Discrete Fourier Transform (DFT), for estimating canopy cover based on High Resolution Camera (HRC) satellite images. The analyses carried out based on the results of the experiments showed that the energy descriptor was the best descriptor among those used and, comparatively to the others, obtained the higher correlation (r), determination (R²) and significance (p). Based on the experiments, the energy descriptor presented an expressive potential to be used in processes for estimating the canopy cover based on satellite images, in large areas of the semi-deciduous forest.
Downloads
References
L. P. C. Morelatto and C. F. B. Haddad, “Introduction: the Brazilian Atlantic forest,” Biotropica, vol. 32, pp. 786-792, 2000.
M. C. Ribeiro, J. P. Metzger, A. C. Martensen, F. J. Ponzoni, and M. M. Hirota, “The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation,” Biological Conservation, vol. 142, pp. 1141-1153, 2009.
Ministério do Meio Ambiente – MMA, “Mata Atlântica manual de adequação ambiental,” Biodiversidade 35, Brasília, 2010.
C. Galindo-Leal and I. G. Câmara, “Mata Atlântica: biodiversidade ameaças e perspectivas,” São Paulo: Fundação SOS Mata Atlântica, Conservação Internacional, 2005.
P. Ranta, T. Blom, J. Niemalã, R. Joensuu, and M. Siltoen, “The fragmented Atlantic rain forest of Brazil: size, shape and distribution of forest fragment,” Biodiversity and Conservation, vol. 7, pp. 385-403, 1998.
Sos Mata Atlântica, Instituto Nacional De Pesquisas Espaciais. “Atlas dos remanescentes florestais e ecossistemas associados no domínio da Mata Atlântica,” São Paulo, Available: http://www.sosmatatlantica.org.br. [Accessed: 20-Feb-2019].
Instituto De Estudos Socioambientais Do Sul Da Bahia (IESB). Instituto de Geociências da Universidade Federal do Rio de Janeiro (IGEO/UFRJ), Departamento de Geografia da Universidade Federal Fluminence (UFF), 2007, “Levantamento da Cobertura Vegetal Nativa do Bioma Mata Atlântica,” Relatório final. PROBIO 03/2004, Brasília.
SOS Mata Atlântica, Instituto Nacional De Pesquisas Espaciais, “Atlas dos remanescentes florestais da Mata Atlântica, período de 20002005,” Available: http://www.sosmatatlantica.org.br. [Accessed: 20-Feb-2019].
M. L. Smith, J. Anderson, and M. Fladeland, “Forest canopy structural properties,” in Field Measurements for Forest Carbon Monitoring. New York: Springer Science and Business Media, 2008.
B. Barnes, D. Zak, S. Denton, and S. Spurr, Forest Ecology. New York, NY, USA: Jonh Wiley & Sons Inc, 1998, pp. 774.
U. H. Finol, “Nuevos parametros a considerarse em el analisis estrutural de las selva vírgenes tropicales,” Revista Forestal Venezolana, vol. 14, pp. 29-42, 1971.
S. J. Longhi, M. M. Araujo, M. B. Kelling, J. M. Hoppe, I. Muller, and G. A. Borsoi, “Aspectos fitossociológicos de fragmento de floresta estacional decidual, Santa Maria, RS,” Ciência Florestal, vol. 10, pp. 59-74, 2000.
L. Á. Silva and J. J. Soares, “Análise sobre o estado sucessional de um fragmento florestal e sobre suas populações,” Revista Árvore, vol. 26, pp. 229-236, 2002a.
L. Á. Silva and J. J. Soares, “Levantamento fitossociológico em um fragmento de Floresta Estacional Semidecídua, no município de São Carlos, SP,” Acta Botanica Brasilica, vol. 16, pp. 205-216, 2002b.
K. dos Santos, L. S. Kinoshita, and F. A. M. Santos, “Tree species composition and similarity in semideciduous forest fragments of southeastern Brazil,” Biological Conservation, vol. 135, pp. 268-277, 2007.
S. B. Jennings, N. B. Brown, and D. Sheil, “Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures,” Forestry, vol. 1, pp. 59-73, 1999.
L. Korhonen, K. T. Korhonen, M. Rautiainen, and P. Stenberg, “Estimation of forest canopy cover: a comparison of field measurement techniques,” Silva Fennica, vol. 40, pp. 577-588, 2006.
A. Paletto and V. Tosi, “Forest canopy cover and canopy closure: comparison of assessment techniques,” European Journal of Forest Research, vol. 128, pp. 265-272, 2009.
A. E. Goodenough and A. S. Goodenough, “Development of a rapid and precise method of digital image analysis to quantify canopy density and structural complexity,” Ecology, 2012.
J. A. A. Meira-Neto, F. R. Martins, and A. L. Souza, “Influência da cobertura e do solo na composição florística do sub-bosque em uma floresta estacional semidecidual em Viçosa, MG, Brasil,” Acta Botanica Brasilica, vol. 19, pp. 473-486, 2005.
T. Yamada, E. C. Pedrino, J. J. Soares, and M. C. Nicoletti, “Assessing the canopy integrity using canopy digital images in semideciduous forest fragment in São Carlos - SP- Brazil,” Revista Árvore, vol. 41, pp. 197, 2017.
A. R. T. Nascimento, J. M. F. Fagg, and C. W. Fagg, “Canopy openness and lai estimates in two seasonally deciduous forests on limestone outcrops in Central Brazil using hemispherical photographs,” Revista Árvore, vol. 31, pp. 167-176, 2007.
D. L. M. Vieira and A. Scariot, “Abertura de dossel: indicador do estado de conservação de fragmentos de florestas deciduais do vale do Paranã-GO,” in Encontro do Talento Estudantil da EMBRAPA recursos genéticos e biotecnologia, Brasília, 2001.
S. G. Leblanc and R. A. Fournier, “Measurement of Forest Structure with Hemispherical Photography”, in Hemispherical Photography in Forest Science: Theory, Methods, Applications, Netherlands: Dordrecht, pp. 53-84, 2017.
M. S. Suganuma, J. M. D. Torezan, A. L. Cavalheiro, A. L. L. Vanzela, and T. Benato, “Comparando metodologias para avaliar a cobertura do dossel e a luminosidade no sub-bosque de um reflorestamento e de uma floresta madura,” Revista Árvore, vol. 32, pp. 377385, 2008.
A. Castillo, J. Vázquez, J. Ortegón, R. Carrasco, and J. Avilés, “Intelligent classification of large-scale remotely sensed hyperspectral images using multi-gpu computing,” IEEE Latin America Transactions, vol. 18, pp. 113-119, 2020.
T. B. Almeida, E. C. Pedrino, and M. M. Fernandes, “Complex morphologial filtering for Serial, Parallel, GPU, SoC, Petalinux and FPGA execution,” IEEE Latin America Transactions, vol. 100, pp. 3139-3147, 2020.
D. Ferreira, “ACPT Exploiting feature extraction techniques for remote sensing image classification, “IEEE Latin America Transactions, vol. 16, pp. 2657-2664, 2018.
E. Muñoz, A. Zozoya, and E. Lindquist, “Satellite remote sensing of forest degradation using NDFI and the BFAST algorithm,” IEEE Latin America Transactions, vol. 18, pp. 1288-129, 2020.
A. Berveblieri, A. M. G. Tommaselli, N. N. Imai, E. A. W. Ribeiro, R. B. Guimarães and E. Honkavaara. “Identification of sucessional stages and cover changes of tropical forest based on digital surface model analysis,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, pp. 5385-5397, 2016.
P. Couteron, R. Pelissier, E. A. Nicolini, and D. Paget, “Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images,” Journal of Applied Ecology, vol. 42, pp. 1121-1128, 2005.
V. Trichon, A. Lafitte-Olano, S. Gatelier, P. Couteron, and L. Blanc, “Investigating the relationships between canopy texture and the structure and dynamics of a tropical rain forest - A high resolution remote sensing approach with aerial photographs and IKONOS data,” The 4th International Canopy Conference, Germany: Leipzig, 2005.
A. C. Ximenes, and S. Amaral, “Predição de parâmetros estruturais de florestas tropicais a partir das técnicas de transformada de Fourier e delineação manual de dossel aplicada em imagens de alta resolução espacial”, Revista Caminhos de Geografia, vol. 11, pp. 202207, 2010.
P. G. C. Sette and P. Maillard, “Análise de textura de imagem de alta resolução para aprimorar a acurácia da classificação da Mata Atlântica no sul da Bahia,” in Anais XV Simpósio Brasileiro de Sensoriamento Remoto, Curitiba, 2011.
L. Korhonen, D. Ali-Sisto, and T. Tokola, “Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data,” Silva Fennica, vol. 49, pp.1-18, 2015.
E. R. Pinagé, E. A. T. Matricardi, F. A. Leal, and M. A. Pedlowski, “Estimates of selective logging impacts in tropical forest canopy cover using RapidEye imagery and field data,” iForest, vol. 9, pp. 461-468, 2016.
G. P. Asner, M. Palace, M. Keller, R. Pereira, J. N. M. Silva, and J. C. Zweede, “Estimating canopy structure in a Amazon forest from laser range finder and IKONOS satellite observations,” Biotropica, vol. 34, pp. 483-492, 2002.
J. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Dering, “Monitoring vegetation systems in the great plains with ERTS,“ in Proceedings of The Earth Resources Technology Satellite-1 Symposium, NASA: Washington, pp. 309-317, 1973.
A. R. Huete, “A soil-adjusted vegetation index (SAVI),” Remote Sensing of Environment, vol. 25, pp. 295-309, 1988.
M. Wulder, “Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters,” Progress in Physical Geography, vol. 22, pp. 449-476, 1998.
F. Kayitakite, C. Hamel, and P. Defourny, “Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery,” Remote Sensing of Environment, vol. 102, pp. 390-401, 2006.
K. Johansen and S. Phinn, “Mapping structural parameters and species composition of ripirian using IKONOS and Landsat ETM+ data in Australian tropical savannahs,” Photogrammetric Engineering and Remote Sensing, vol. 72, pp. 71-80, 2006.
J. Meng, S. Li, W. Wang, Q. Liu, S. Xie, and W. Ma, “Estimation of forest structural diversity using the spectral and textural information derived from SPOT-5 satellite images,” Remote Sensing, vol. 8, pp. 1-24, 2016.
D. Stojanova, P. Panov, V. Gjorgjioski, A. Kobler, and S. Dzeroski, “Estimating vegetation height and canopy cover from remotely sensed data with machine learning,” Ecological Informatics, vol. 5, pp. 256-266, 2010.
R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-3, pp. 610-621, 1973.
T. M. O. Santiago, J. L. P. Rezende, and L. A. C. Borges, “The legal reserve: historical basis for the understanding and analysis of this instrument,” Ciência Rural, vol. 47, 2016.
R. C. Hora and J. J. Soares, “Estrutura fitossociológica da comunidade de lianas em uma floresta estacional semidecidual na Fazenda Canchim, São Carlos, SP,” Revista Brasileira de Botânica, vol. 25, pp. 323-329, 2002.
O. Primavesi, A. C. P. A. Primavesi, A. F. Pedroso,A. C. Camargo, J. B. Rassini, J. R. Filho, G. P. Oliveira, L. A. Correa, M. J. A. Armelin, S. R. Vieira, and S. C. F. Dechen, “Microbacia hidrográfica do ribeirão Canchim: um modelo real de laboratório ambiental,” Boletim de Pesquisa, EMBRAPA, Ministério da Agricultura e do Abastecimento, 1999.
C. Macfarlane, “Classification method of mixed pixels does not affect canopy metrics from digital images of forest overstorey,” Agricultural and Forest Meteorology, vol. 151, pp. 833-840, 2011.
G. Z. M. Song, D. Doley, D. Yates, K. J. Chao, and C. F. Hsieh, “Improving accuracy of canopy hemispherical photography by a constant threshold valued derived from an unobscured overcast sky,” Canadian Journal of Forest Research, vol. 44, pp. 17-27, 2014.
Y. Deng and B. S. Manjunath, “Unsupervised segmentation of color-texture regions in images and video,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, pp. 800-810, 2001.