A Convolutional and long short-time memory network configuration to predict the remaining useful life of rotating machinery
Keywords:
Convolutional network, Recurrent neural network, Wavelet transform, Short-time Fourier transform, Remaining useful life, Hybrid neural networkAbstract
Recently, several machine learning approaches have been proposed to provide predictions of the remaining useful life of rotating machine. This study presents a strong framework that employs machine learning algorithms to predict the useful life of rotating machine bearings by evaluating their vibration signals. In this approach, the raw vibration signal undergoes feature extraction through auxiliary methods, trend analysis through statistical methods, and time-dependent feature extraction through a specialized hybrid neural network algorithm. The architecture is composed of three distinct phases: Feature analysis, where the raw vibration data are processed to extract important characteristics for the definition of the signal trend creating a time series and Modeling, where the training data is processed in a hybrid convolutional neural network, which returns a degradation model aiming at estimating the instant of total failure. The neural network is also utilized to analyze test data and identify the moment just prior to the occurrence of failure; and finally the Prediction, phase where the future failure trend of the test data is identified, using the failure threshold extracted from the training data. We used the architecture to predict the remaining useful life of rotating machines in various cases, and the results error ranged between 3 and 4%, which is considered a good result.
Downloads
References
A. K. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and prognostics implementing condition-based maintenance,”Mech Syst Signal Process, vol. 20, pp. 1483–1510, Oct. 2006. doi: 10.1016/j.ymssp.2005.09.012.
L. Polverino, R. Abbate, P. Manco, D. Perfetto, F. Caputo, R. Macchiaroli, and M. Caterino, “Machine learning for prognostics and health management of industrial mechanical systems and equipment: A systematic literature review,” International Journal of Engineering Business Management, vol. 15, p. 18479790231186848, Jul. 2023. doi: 10.1177/18479790231186848.
F. Ahmadzadeh and J. Lundberg, “Remaining useful life estimation: review,” International Journal of System Assurance Engineering and Management, vol. 5, pp. 461–474, Sep. 2013. doi: 10.1007/s13198-013-0195-0.
X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining useful life estimation – a review on the statistical data driven approaches,” European Journal of Operational Research, vol. 213, pp. 1–14, Aug. 2011. doi: 10.1016/j.ejor.2010.11.018.
S. Xiang, P. Li, Y. Huang, J. Luo, and Y. Qin, “Single gated rnn with differential weighted information storage mechanism and its application to machine rul prediction,” Reliability Engineering & System Safety, vol. 242, p. 109741, Feb. 2024. doi: 10.1016/j.ress.2023.109741.
Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery health prognostics: A systematic review from data acquisition to rul prediction,”Mech Syst Signal Process, vol. 104, pp. 799–834, May 2018. doi: 10.1016/j.ymssp.2017.11.016.
M. J. Roemer, C. S. Byington, G. J. Kacprzynski, G. Vachtsevanos, and K. Goebel, Prognostics, ch. 17, pp. 281–295. John Wiley & Sons, Ltd, May 2011. doi: 10.1002/9781119994053.ch17.
M. Kaji, J. Parvizian, and H. W. van de Venn, “Constructing a reliable health indicator for bearings using convolutional autoencoder and continuous wavelet transform,” Applied Sciences, vol. 10, p. 8948, Dec. 2020. doi: 10.3390/app10248948.
B. P. Duong, S. A. Khan, D. Shon, K. Im, J. Park, D.-S. Lim, B. Jang, and J.-M. Kim, “A reliable health indicator for fault prognosis of bearings,” Sensors, vol. 18, p. 3740, Oct. 2018. doi: 10.3390/s18113740. [10] J. C. A. Jauregui Correa and A. A. Lozano Guzman, “Chapter eight - condition monitoring,” in Mechanical Vibrations and Condition Monitoring (J. C. A. Jauregui Correa and A. A. Lozano Guzman, eds.), pp. 147–168, Academic Press, 2020. doi: 10.1016/B978-0-12-819796-7.00008-1.
V. Atamuradov, K. Medjaher, F. Camci, N. Zerhouni, P. Dersin, and B. Lamoureux, “Machine health indicator construction framework for failure diagnostics and prognostics,” J Signal Process Syst, vol. 92, pp. 591–609, Jun. 2020. doi: 10.1007/s11265-019-01491-4.
R. Yan, R. X. Gao, and X. Chen, “Wavelets for fault diagnosis of rotary machines: A review with applications,” Signal Processing, vol. 96, pp. 1– 15, Mar. 2014. doi = 10.1016/j.sigpro.2013.04.015.
X. Wang, V. Makis, and M. Yang, “A wavelet approach to fault diagnosis of a gearbox under varying load conditions,” Journal of Sound and Vibration, vol. 329, pp. 1570–1585, Apr. 2010. doi: 10.1016/j.jsv.2009.11.010.
W. Yang, P. J. Tavner, C. J. Crabtree, and M. Wilkinson, “Costeffective condition monitoring for wind turbines,” IEEE Transactions on industrial electronics, vol. 57, pp. 263–271, Jan. 2010. doi: 10.1109/TIE.2009.2032202.
B. Tang, W. Liu, and T. Song, “Wind turbine fault diagnosis based on morlet wavelet transformation and wigner-ville distribution,”Renewable Energy, vol. 35, pp. 2862–2866, Dec. 2010. doi: 10.1016/j.renene.2010.05.012.
H. Shao, H. Jiang, F. Wang, and Y. Wang, “Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet,” ISA Transactions, vol. 69, pp. 187–201, Jul. 2017. doi: 10.1016/j.isatra.2017.03.017.
S. Khan and T. Yairi, “A review on the application of deep learning in system health management,” Mechanical Systems and Signal Processing, vol. 107, pp. 241–265, Jul. 2018. doi: 10.1016/j.ymssp.2017.11.024.
O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier,S. Verstockt, R. Van de Walle, and S. Van Hoecke, “Convolutional neural network based fault detection for rotating machinery,” J Sound Vib, vol. 377, pp. 331–345, Sep. 2016. doi: 10.1016/j.jsv.2016.05.027.
L. Wen, X. Li, L. Gao, and Y. Zhang, “A new convolutional neural network-based data-driven fault diagnosis method,” IEEE Transactions on Industrial Electronics, vol. 65, pp. 5990–5998, Jul. 2018. doi: 10.1109/TIE.2017.2774777.
H. Jiang, X. Li, H. Shao, and K. Zhao, “Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network, ”Measurement Science and Technology, vol. 29, p. 065107, May 2018. doi: 10.1088/1361-6501/aab945.
J.-K. Hong, “Vibration prediction of flying iot based on lstm and gru,” Electronics, vol. 11, no. 7, pp. 1052 – 1068, 2022. DOI: 10.3390/electronics11071052.
L. Tang, S. Zhang, X. Yang, and S. Hu, “Research on prognosis for engines by lstm deep learning method,” in 2019 Prognostics and System Health Management Conference (PHM-Qingdao), pp. 1–8, IEEE, 2019. doi: 10.1109/PHM-Qingdao46334.2019.8942976.
M. Jalayer, C. Orsenigo, and C. Vercellis, “Fault detection and diagnosis for rotating machinery: A model based on convolutional lstm, fast fourier and continuous wavelet transforms,” Computers in ndustry, vol. 125, p. 103378, Feb. 2021. doi: 10.1016/j.compind.2020.103378.
M. Soualhi, K. T. Nguyen, and K. Medjaher, “Explainable rul estimation of turbofan engines based on prognostic indicators and heterogeneous ensemble machine learning predictors,” Engineering Applications of Artificial Intelligence, vol. 133, p. 108186, Feb. 2024. doi: 10.1016/j.engappai.2024.108186.
T. Guo, T. Zhang, E. Lim, M. López-Benítez, F. Ma, and L. Yu, “A review of wavelet analysis and its applications: Challenges and opportunities,” IEEE Access, vol. 10, pp. 58869–58903, Jun. 2022. doi: 10.1109/ACCESS.2022.3179517.
N. Kehtarnavaz, “Chapter 7 - frequency domain processing,” in Digital Signal Processing System Design (Second Edition) (N. Kehtarnavaz, ed.), pp. 175–196, Burlington: Academic Press, second edition ed., 2008. doi: 10.1016/B978-0-12-374490-6.00007-6.
Y. T. Chan, Wavelet Basics. Springer US, 1995. doi: 10.1007/978-1-4615-2213-3.
M. Tovar, M. Robles, and F. Rashid, “Pv power prediction, using cnn-lstm hybrid neural network model. case of study: Temixcomorelos, méxico,” Energies, vol. 13, p. 6512, Dec. 2020. doi: 10.3390/en13246512.
X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, and M. P. and, “A review of convolutional neural networks in computer vision,” Artificial Intelligence Review, vol. 57, pp. 57–99, Mar. 2024. doi: 10.1007/s10462-024-10721-6.
A. Ajit, K. Acharya, and A. Samanta, “A review of convolutional neural networks,” in 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), (Vellore, India), pp. 1–5, IEEE, Feb. 2020. doi: 10.1109/ic-etite47903.2020.049. [31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”Neural Computation, vol. 9, pp. 1735–1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735.
S. M. Al-Selwi, M. F. Hassan, S. J. Abdulkadir, A. Muneer, E. H. Sumiea, A. Alqushaibi, and M. G. Ragab, “Rnn-lstm: From applications to modeling techniques and beyond—systematic review,” Journal of King Saud University - Computer and Information Sciences, vol. 36, pp. 1224–1236, Sep. 2024. doi: 10.1016/j.jksuci.2024.102068.
X. Ran, Z. Shan, Y. Fang, and C. Lin, “An lstm-based method with attention mechanism for travel time prediction,” Sensors, vol. 19, p. 861, Feb. 2019. doi: 10.3390/s19040861.
M. N. Nounou and B. R. Bakshi, Chapter 5 - Multiscale Methods for Denoising and Compression, vol. 22 of Data Handling in Science and Technology. Elsevier, 2000. doi: 10.1016/S0922-3487(00)80030-1.
V. Kannan, T. Zhang, and H. Li, “A review of the intelligent condition monitoring of rolling element bearings,” Machines, vol. 12, p. 484, Jul. 2024. doi: 10.3390/machines12070484.
M. Awad and R. Khanna, “Support vector regression,” in Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, pp. 67–80, Berkeley,CA: Apress, Apr. 2015. doi: 10.1007/978-1-4302-5990-9_4.
L. Kou, M. Sysyn, J. Liu, S. Fischer, O. Nabochenko, and W. He, “Prediction system of rolling contact fatigue on crossing nose based on support vector regression,” Measurement, vol. 210, p. 112579, Mar. 2023. doi: 10.1016/j.measurement.2023.112579.
P. Nectoux, R. Gouriveau, K. Medjaher, E. Ramasso, B. Chebel-Morello, N. Zerhouni, and C. Varnier, “Pronostia: An experimental platform for bearings accelerated degradation tests.,” in IEEE International Conference on Prognostics and Health Management, PHM’12., (Denver, Colorado, United States.), pp. 1–8, IEEE Catalog Number: CPF12PHMCDR, 2012.
B. Wang, Y. Lei, N. Li, and N. Li, “A hybrid prognostics approach for estimating remaining useful life of rolling element bearings,” IEEE Transactions on Reliability, vol. 69, pp. 401–412, Jan. 2020. doi: 10.1109/TR.2018.2882682.
Y. Chen, G. Peng, Z. Zhu, and S. Li, “A novel deep learning method based on attention mechanism for bearing remaining useful life prediction,”Applied Soft Computing, vol. 86, p. 105919, Jan. 2020. doi: 10.1016/j.asoc.2019.105919.
E. Sutrisno, H. Oh, A. S. S. Vasan, and M. Pecht, “Estimation of remaining useful life of ball bearings using data driven methodologies,”in 2012 IEEE Conference on Prognostics and Health Management, pp. 1–7, Jul. 2012. doi: 10.1109/ICPHM.2012.6299548.
L. Ren, W. Lv, and S. Jiang, “Machine prognostics based on sparse representation model,” Journal of Intelligent Manufacturing, vol. 29, pp. 277–285, Feb. 2018. doi: 10.1007/s10845-015-1107-8. [43] J. Zhu, N. Chen, and W. Peng, “Estimation of bearing remaining useful life based on multiscale convolutional neural network,” IEEE Transactions on Industrial Electronics, vol. 66, pp. 3208–3216, Jun. 2019. doi: 10.1109/TIE.2018.2844856.
J. Zhu, N. Chen, and W. Peng, “Estimation of bearing remaining useful life based on multiscale convolutional neural network,” IEEE Transactions on Industrial Electronics, vol. 66, pp. 3208–3216, Jun. 2019. doi: 10.1109/TIE.2018.2844856.