Bidirectional protection for DC systems based on di/dt behavior
Keywords:
DC breaker, DC microgrid, DC protection, di/dt detectionAbstract
The modern electric power systems are going through a revolutionary change due the development of DC loads and higher efficiency of DC systems where DC microgrids have some attractive characteristics, however they have several challenges such as limiting and interrupting fault current. In this paper, a protection for DC systems based on transient di/dt detection is proposed to provide faster short-circuit and overcurrent fault detection, where DC breakers are required to be designed for bidirectional fault current conditions, which is a challenge regarding DC microgrid applications due to some associated problems such as long periods of fault interruption, complex circuit structure, and low reliability. The proposal can detect fault current conditions for different distances from the point of failure, and is suitable to operation in both islanding and grid connected conditions. The proposed circuit was analyzed theoretically and experimentally in steady state, as well as under load changes and short circuit conditions to ensure proper operation, making this solution a suitable fast current fault DC breaker solution, which is a significant advantage and requirement in protection of DC systems.
Downloads
References
A. Mohammed, S. S. Refaat, S. Bayhan, and H. Abu-Rub, “AC Microgrid Control and Management Strategies: Evaluation and Review,” IEEE Power Electronics Magazine, vol. 6, no. 2, pp. 18–31, Jun. 2019. doi:10.1109/mpel.2019.2910292.
A. M. Bouzid et al., “A survey on control of Electric Power Distributed Generation Systems for microgrid applications,” Renewable and Sustainable Energy Reviews, vol. 44, pp. 751–766, Apr. 2015. doi:10.1016/j.rser.2015.01.016.
Y. Yoldaş, A. Önen, S. M. Muyeen, A. V. Vasilakos, and İ. Alan, “Enhancing smart grid with microgrids: Challenges and opportunities,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 205–214, May 2017. doi:10.1016/j.rser.2017.01.064
J. J. Justo, F. Mwasilu, J. Lee, and J.-W. Jung, “AC-microgrids versus DC-microgrids with Distributed Energy Resources: A Review,” Renewable and Sustainable Energy Reviews, vol. 24, pp. 387–405, Aug. 2013. doi:10.1016/j.rser.2013.03.067.
J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158–172, Jan. 2011. doi:10.1109/tie.2010.2066534
N. Bayati, A. Hajizadeh, and M. Soltani, “Protection in DC microgrids: A comparative review,” IET Smart Grid, vol. 1, no. 3, pp. 66–75, Sep. 2018. doi:10.1049/iet-stg.2018.0035
B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 988–997, Jan. 2017. doi:10.1016/j.rser.2016.09.047.
S. C. Vegunta et al., “AC microgrid protection system design challenges—a practical experience,” Energies, vol. 14, no. 7, p. 2016, Apr. 2021. doi:10.3390/en14072016.
[1] A. Hooshyar and R. Iravani, “Microgrid protection,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1332–1353, Jul. 2017. doi:10.1109/jproc.2017.2669342
J.-D. Park, J. Candelaria, L. Ma, and K. Dunn, “DC ring-Bus Microgrid Fault Protection and identification of fault location,” IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2574–2584, Oct. 2013. doi:10.1109/tpwrd.2013.2267750.
V. Albernaz Lacerda, R. M. Monaro, D. Campos‐Gaona, D. V. Coury, and O. Anaya‐Lara, “Distance protection algorithm for multiterminal HVDC systems using the hilbert–huang transform,” IET Generation, Transmission & Distribution, vol. 14, no. 15, pp. 3022–3032, May 2020. doi:10.1049/iet-gtd.2019.1551.
J. Lai, H. Zhou, X. Lu, and Z. Liu, “Distributed Power Control for Ders based on networked multiagent systems with communication delays,” Neurocomputing, vol. 179, pp. 135–143, Feb. 2016. doi:10.1016/j.neucom.2015.11.068
Y. Wang, W. Li, X. Wu, and X. Wu, “A novel bidirectional solid-State Circuit Breaker for DC Microgrid,” IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5707–5714, Jul. 2019. doi:10.1109/tie.2018.2878191.
A. Meghwani, S. C. Srivastava, and S. Chakrabarti, “A non-unit protection scheme for DC microgrid based on local measurements,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 172–181, Feb. 2017. doi:10.1109/tpwrd.2016.2555844.
Y. Ren et al., “A single gate driver based solid-state circuit breaker using series connected sic mosfets,” IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2002–2006, Mar. 2019. doi:10.1109/tpel.2018.2861920
Z. J. Shen et al., “First Experimental Demonstration of Solid State Circuit Breaker (SSCB) using 650V Gan-based monolithic bidirectional switch,” 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Jun. 2016. doi:10.1109/ispsd.2016.7520782
G. E. Mejia-Ruiz, M. R. Paternina, A. Zamora-Mendez, J. C. Rosas-Caro, and G. Bolivar-Ortiz, “A novel gan-based solid-state circuit breaker with voltage overshoot suppression,” IEEE Transactions on Industrial Electronics, vol. 69, no. 9, pp. 8949–8960, Sep. 2022. doi:10.1109/tie.2021.3116557
D. Keshavarzi, T. Ghanbari, and E. Farjah, “A Z-source-based bidirectional DC Circuit Breaker with fault current limitation and interruption capabilities,” IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 6813–6822, Sep. 2017. doi:10.1109/tpel.2016.2624147.
S. Savaliya, S. Singh, and B. G. Fernandes, “Protection of DC system using bi-directional Z-source circuit breaker,” IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Oct. 2016. doi:10.1109/iecon.2016.7793084
H. Shu and Z. Shao, “A bi-directional current-limiting hybrid DC circuit breaker with fast-breaking capability,” Electric Power Systems Research, vol. 226, p. 109902, Jan. 2024. doi:10.1016/j.epsr.2023.109902
B. J. Hyon et al., “Design of a solid state circuit breaker using a SIC MOSFET for LVDC applications,” IEEE Access, vol. 12, pp. 65278–65286, 2024. doi:10.1109/access.2024.3396127.
M. M. Hasan, R. Kannan, and S. M. Muyeen, “DC Circuit Breaker: A topology with regenerative current breaking capability for DC Microgrid Applications,” Electric Power Systems Research, vol. 234, p. 110544, Sep. 2024. doi:10.1016/j.epsr.2024.110544.
J. Chen et al., “A novel direct current circuit breaker with a gradually increasing counter-current,” Electronics, vol. 13, no. 10, p. 1883, May 2024. doi:10.3390/electronics13101883.
X. Yu, G. Jia, X. Liu, Y. Yuan, and M. Li, “A novel current-limiting hybrid DC breaker based on Thyristors,” Energy Reports, vol. 9, pp. 983–991, Sep. 2023. doi:10.1016/j.egyr.2023.04.150
F. Mumtaz, K. Imran, H. Rehman, and S. B. Bukhari, “Novel protection method for AC microgrids with multiple distributed generations using unscented Kalman filter,” Electric Power Systems Research, vol. 230, p. 110227, May 2024. doi:10.1016/j.epsr.2024.110227
F. Mumtaz, K. Imran, H. Rehman, and H. A. Qureshi, “Hardware supported fault detection and localization method for AC microgrids using mathematical morphology with state observer algorithm,” IEEE Access, vol. 12, pp. 12446–12457, 2024. doi:10.1109/access.2024.3354790
F. Mumtaz, K. Imran, H. Rehman, and S. B. Bukhari, “1D recursive median filter based passive islanding detection strategy for grid‐connected distributed generations network,” IET Renewable Power Generation, vol. 17, no. 7, pp. 1731–1746, Mar. 2023. doi:10.1049/rpg2.12708
F. Mumtaz, K. Imran, A. Abusorrah, and S. B. Bukhari, “An extensive overview of islanding detection strategies of active distributed generations in sustainable microgrids,” Sustainability, vol. 15, no. 5, p. 4456, Mar. 2023. doi:10.3390/su15054456
F. Mumtaz, K. Imran, A. Abusorrah, and S. B. Bukhari, “Harmonic content-based protection method for microgrids via 1-dimensional recursive median filtering algorithm,” Sustainability, vol. 15, no. 1, p. 164, Dec. 2022. doi:10.3390/su15010164
F. Mumtaz et al., “Ultra high-speed fault diagnosis scheme for DC distribution systems based on discrete median filter and mathematical morphology,” IEEE Access, vol. 12, pp. 45796–45810, 2024. doi:10.1109/access.2024.3381519
J. Vázquez, E. J. Rodriguez, J. Arau, and N. Vázquez, “A di/DT detection circuit for DC unidirectional breaker based on inductor transient behaviour,” Sustainability, vol. 13, no. 16, p. 9466, Aug. 2021. doi:10.3390/su13169466