Noise Amplitude in Ambient PMU Data and its Impact on Load Models Identification
Keywords:
Ambient PMU Data, Load Modeling, Noise, PMU Noise, PMU, ZIP Load ModelAbstract
A current trend in load modeling topic is to take advantage of ambient data from Phasor Measurement Units (PMU) to estimate the parameters of load models. In this context, the estimation algorithms or methodologies that are proposed or investigated need to be evaluated in a controlled environment, where, among other things, synthetic PMU measurements obtained from simulations are used. These synthetic measurements require the addition of noise to be like the real ones. The problem found in the literature is the large difference in noise magnitudes used by the authors in their research. These magnitudes in several cases are inconsistent with each other and even seem to be exaggerated. It is for this reason that the present work determines the noise contained in the ambient data reported by PMU. The reliability of the results of this work is based, among other things, on the use of real PMU measurements, located in two different countries, with diverse reporting rates, and located at high, medium, and low voltage. Moreover, this work quantifies the impact that noise has on load modeling with ambient PMU data. In conclusion, the main results of this work are two. The first one covers the noise magnitudes contained in ambient PMU data. The second one demonstrates that noise has a significant and negative impact on load modeling.
Downloads
References
A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao, “Load modeling - A review,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5986–5999, 2018, doi: 10.1109/TSG.2017.2700436.
J. R. Constante and G. Colomé, “Estado del Arte y Tendencias en el Modelamiento de Carga,” Rev. Técnica “energía,” vol. 18, no. 2, pp. 1–12, 2022, doi: 10.37116/revistaenergia.v18.n2.2022.475.
“C37.118.1-2011 IEEE Standard for Synchrophasor Measurements for Power Systems.”.
J. R. Constante and D. G. Colome, “Estimación Paramétrica del Modelo de Carga ZIP basada en Técnicas de Optimización y en Mediciones de PMU,” 2022 IEEE Bienn. Congr. Argentina (ARGENCON), San Juan, Argentina, pp. 1–8, 2022, doi: 10.1109/ARGENCON55245.2022.9940010.
M. Brown, M. Biswal, S. Brahma, S. J. Ranade, and H. Cao, “Characterizing and quantifying noise in PMU data,” 2016 IEEE Power Energy Soc. Gen. Meet., vol. 2016, no. 2019–07, pp. 1–5, 2016, doi: 10.1109/PESGM.2016.7741972.
X. Zhang, C. Lu, J. Lin, and Y. Wang, “Experimental measurement of PMU error distribution and its impact on load model identification,” 2016 IEEE Power Energy Soc. Gen. Meet. (PESGM), Boston, MA, pp. 1–5, 2016, doi: 10.1109/PESGM.2016.7741069.
P. Tripathy, S. C. Srivastava, and S. N. Singh, “A divide-by-difference-filter based algorithm for estimation of generator rotor angle utilizing synchrophasor measurements,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1562–1570, 2010, doi: 10.1109/TIM.2009.2026617.
L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality reduction of synchrophasor data for early event detection: Linearized analysis,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2784–2794, 2014, doi: 10.1109/TPWRS.2014.2316476.
D. Shi, D. J. Tylavsky, and N. Logic, “An adaptive method for detection and correction of errors in PMU measurements,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1575–1583, 2012, doi: 10.1109/TSG.2012.2207468.
J. Zhang, G. Welch, G. Bishop, and Z. Huang, “A two-stage kalman filter approach for robust and Real-Time power system State Estimation,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 629–636, 2014, doi: 10.1109/TSTE.2013.2280246.
E. O. Kontis, T. A. Papadopoulos, A. I. Chrysochos, and G. K. Papagiannis, “Measurement-Based dynamic load modeling using the vector fitting technique,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 338–351, 2018, doi: 10.1109/TPWRS.2017.2697004.
H. Ren, N. N. Schulz, V. Krishnan, and Y. Zhang, “Online Static Load Model Estimation in Distribution Systems,” 2019 IEEE 28th Int. Symp. Ind. Electron. (ISIE), Vancouver, BC, Canada, pp. 153–158, 2019, doi: 10.1109/ISIE.2019.8781530.
K. Fungyai, N. Sangmeg, A. Pichetjamroen, S. Dechanupaprittha, and N. Somakettarin, “Determination of ZIP Load Model Parameters based on Synchrophasor Data by Genetic Algorithm,” 2020 8th Int. Electr. Eng. Congr. (iEECON), Chiang Mai, Thail., pp. 1–4, 2020, doi: 10.1109/iEECON48109.2020.229509.
H. A. A. Shafiei, Mehdi; Nourbakhsh, Ghavameddin; Ledwich, Gerard; Femando, Tyrone; Iu, “Dynamic Load Modelling Using Measured Data in Distribution Networks,” 3rd Int. Conf. Power Gener. Syst. Renew. Energy Technol., pp. 3–6, 2017, doi: 10.1109/PGSRET.2017.8251791.
J. Price and T. Goble, “Signals and noise,” in Telecommunications Engineer’s Reference Book, Butterworth-Heinemann, 1993, pp. 10-1-10–15. doi: 10.1016/B978-0-7506-1162-6.50016-2.
D. G. Colomé et al., “Proyecto MEDFASEE BT Argentina. Observatorio del comportamiento dinámico del sistema argentino de interconexión,” I Jorn. Comun. Investig. y Extensión la Fac. Ing. la UNSJ, San Juan, Argentina, no. May, 2021.
N. Granda and V. Jácome, “Esquema Automático de Alivio de Carga para Sistemas Eléctricos que sirven a Plataformas Petroleras,” Rev. Técnica “energía,” vol. 19, no. 2, pp. 58–68, 2023, doi: 10.37116/revistaenergia.v19.n2.2023.557.
C. WG C4.605, Modelling and Aggregation of Loads in Flexible Power Networks, no. February. 2014.
J. V. Milanović, K. Yamashita, S. Martínez Villanueva, S. Ž. Djokić, and L. M. Korunović, “International industry practice on power system load modeling,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3038–3046, 2013, doi: 10.1109/TPWRS.2012.2231969.