Disease-IncRNA associations prediction based on fast random walk with restart in heterogeneous networks

Authors

Keywords:

IncRNA, Disease, Heterogeneous networks, Network propagation algorithm

Abstract

Long non-coding RNAs (lncRNAs) represent a fundamental category of epigenetic modulators. Recent research has revealed that lncRNAs play critical roles in gene regulatory mechanisms, substantially influencing the pathogenesis of various human diseases. In this study, a multilayer heterogeneous network was created and we introduced the fast random walk with restart (FRWR) for predicting connections between lncRNAs and diseases. By combining the similarity network of lncRNA, similarity network of disease, and association network of existing lncRNA-disease, a multilayer heterogeneous network was constructed, and the fast random walk with restart method (FRWR) was applied on this network to predict additional potential lncRNA-disease associations. The AUROC value of 0.9034, achieved through leave-one-out cross-validation, underscored the predictive precision of the FRWR technique. Furthermore, a case study of three different diseases provided further validation of the reliability of prediction results. Overall, the multilayer network FRWR method proposed in this work could effectively forecasting the connections between lncRNAs and diseases, offering valuable insights into comprehending the functions of lncRNAs in the context of human health and disease. The source code for the FRWR method can be accessed at: https://github.com/TianTianTian14/FRWR.

Downloads

Download data is not yet available.

Author Biographies

Jinlong Ma, Hebei University of Science and Technology

Jinlong Ma was awarded his Ph.D. in information and communication engineering in 2016 by the Harbin Institute of Technology, located in Harbin, China. Presently, he holds the position of Associate Professor at the School of Information Science and Engineering, which is part of the Hebei University of Science and Technology in Shijiazhuang, China. His research is primarily focused on the dynamics of information dissemination within complex networks, as well as analyzing data from online social networks.

Tian Qin, Hebei University of Science and Technology

Tian Qin is presently pursuing a master's degree at the Hebei University of Science and Technology in Shijiazhuang, China. His areas of research focus on big data in networks and the study of complex networks.

References

M. Guttman, I. Amit, M. Garber et al, “Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals”, Nature, DOI:10.1038/nature07672, vol. 458, no. 7235, pp. 223-227, 2009.

P. Johnsson, L. Lipovich, D. Grandér et al, “Evolutionary conservation of long non-coding RNAs; sequence, structure, function”, Biochimica et Biophysica Acta-General Subjects, DOI:10.1016/j.bbagen.2013.10.035, vol. 1840, no. 3, pp. 1063–1071, 2014.

A. N. Khachane, P. M. Harrison, “Mining mammalian transcript data for functional long non-coding RNAs”, PLoS One, DOI:10.1371/journal.pone.0010316, vol. 5, no. 4, pp. e10316, 2010.

T. R. Mercer, M. E. Dinger, S. M. Sunkin et al, “Specific expression of long noncoding RNAs in the mouse brain”, Proceedings Of The National Academy Of Sciences Of The Nited States Of America, DOI:10.1073/pnas.0706729105, vol. 105, no. 2, pp. 716–721, 2008.

L. A. Goff, A. F. Groff, M. Sauvageau et al, “Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain”, Proceedings Of The National Academy Of Sciences Of The Nited States Of America, DOI:10.1073/pnas.1411263112, vol. 112, no. 22, pp.6855–6862, 2015.

J. Whitehead, G. K. Pandey, C. Kanduri, “Regulation of the mammalian epigenome by long noncoding RNAs”, Biochimica et Biophysica ActaGeneral Subjects, DOI:10.1016/j.bbagen.2008.10.007, vol. 1790, no. 9, pp. 936–947, 2009.

J. Ponjavic, P. L. Oliver, G. Lunter et al, “Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain”, PLoS Genetics, DOI:10.1371/journal.pgen.1000617, vol. 5, no. 8, pp. e1000617, 2009.

M. K. Iyer, Y. S. Niknafs, R. Malik et al, “The landscape of long noncoding RNAs in the human transcriptome”, Nature Genetics, DOI:10.1038/ng.3192, vol. 47, no. 3, pp. 199–208, 2015.

U. R. Barbara, J. Lagarde, A. Frankish et al, “Towards a complete map of the human long non-coding RNA transcriptome”, Nature Reviews Genetics, DOI:10.1038/s41576-018-0017-y, vol. 19, no. 9, pp. 535–548, 2018.

Z. Du, T. Fei, R. G. W. Verhaak et al, “Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer”, Nature Structural & Molecular Biology, DOI:10.1038/nsmb.2591, vol. 20, no. 7, pp. 908-913, 2013.

L. X. Liu, W. Deng, X. T. Zhou et al, “The mechanism of adenosine-mediated activation of lncRNA MEG3 and its antitumor effects in human hepatoma cells”, International Journal Of Oncology, DOI:10.3892/ijo.2015.3248, vol. 48, no. 1, pp. 421–429, 2016.

M. Vizoso, M. Esteller, “The activatory long non-coding RNA DBE-T reveals the epigenetic etiology of facioscapulohumeral muscular dystrophy”, Cell Research, DOI:10.1038/cr.2012.93, vol. 22, no. 10, pp. 1413– 1415, 2012.

A. G. Shabgah, F. Norouzi, H. M. Mahdiyeh et al, “A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease”, Nutrition & Metabolism, DOI:10.1186/s12986-021-00552-5, vol. 18, pp. 1–15, 2021.

E. Chesnokova, A. Beletskiy, P. Kolosov, “The role of transposable elements of the human genome in neuronal function and pathology”, International Journal Of Molecular Sciences, DOI:10.3390/ijms23105847, vol. 23, no. 10, pp. 5847, 2022.

M. A. Faghihi, F. Modarresi, A. M. Khalil et al, “Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of -secretase”, Nature Medicine, DOI:10.1038/nm1784, vol. 14, no. 7, pp. 723–730, 2008.

S. C. Anna, K. Yumi, Y. Yusuke et al, “Emerging roles of long noncoding RNA in cancer”, Cancer Science, DOI:10.1111/cas.13642, vol. 109, no. 7, pp. 2093–2100, 2018.

S. B. Qu, Y. Zhong, R. Z. Shang et al, “The emerging landscape of circular RNA in life processes”, RNA Biology, DOI:10.1080/15476286.2016.1220473, vol. 14, no. 8, pp. 992-999, 2017.

J. Sun, H. Shi, Z. Wang et al, “Inferring novel lncRNAdisease associations based on a random walk model of a lncRNA functional similarity network”, Molecular BioSystems, DOI:10.1039/c3mb70608g, vol. 10, no. 8, pp. 2074–2081, 2014.

G. Yu, G. Fu, C. Lu et al, “BRWLDA: bi-random walks for predicting lncRNA-disease associations”, Oncotarget, DOI:10.18632/oncotarget.19588, vol. 8, no. 36, pp. 60429, 2017.

M. N. Wang, Z. H. You, L. Wang et al, “LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization”, Neurocomputing, DOI:10.1016/j.neucom.2020.02.062, vol. 424, pp. 236–245, 2021.

M. Zeng, C. Lu, F. Zhang et al, “SDLDA: lncRNA-disease association prediction based on singular value decomposition and deep learning”, Methods, DOI:10.1016/j.ymeth.2020.05.002, vol. 179, pp. 73–80, 2020.

C. Lu, M. Yang, F.Luo et al, “Prediction of lncRNAdisease associations based on inductive matrix completion”, Bioinformatics, DOI:10.1093/bioinformatics/bty327, vol. 34, no. 19, pp. 3357-3364, 2018.

Z. Bao, Z. Yang, Z. Huang et al, “LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases”, Nucleic Acids Research, DOI:10.1093/nar/gky905, vol. 47, no. D1, pp. D1034-D1037, 2019

D. Wang, J. Wang, M. Lu et al, “Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases”, Bioinformatics, DOI:10.1093/bioinformatics/btq241, vol. 26, no. 13, pp. 1644–1650, 2010.

J. Luo, Q. Xiao, “A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network”, Journal Of Biomedical Informatics, DOI:10.1016/j.jbi.2017.01.008, vol. 66, pp. 194–203, 2017.

X. Chen, Z. H. You, G. Y. Yan et al, “Irwrlda: improved random walk with restart for lncrna-disease association prediction”, Oncotarget, DOI:10.18632/oncotarget.11141, vol. 7, no. 36, pp. 57919–57931, 2016.

J. Li, Y. Zhao, S. Zhou et al, “Inferring lncRNA functional similarity based on integrating heterogeneous network data”, Frontiers in Bioengineering and Biotechnology, DOI:10.3389/fbioe.2020.00027, vol. 8, pp. 27, 2020.

Z. H. You, Z. A. Huang, Z. Zhu et al, “Pbmda: a novel and effective path-based computational model for mirnadisease association prediction”, PLoS Computational Biology, DOI:10.1371/journal.pcbi.1005455, vol. 13, no. 3, pp. e1005455, 2017.

Y. A. Huang, X. Chen, Z. H. You et al, “Ilncsim: improved lncrna functional similarity calculation model”, Oncotarget, DOI:10.18632/oncotarget.8296, vol. 7, no. 18, pp. 25902–25914, 2016.

L. T. Van, S. B. Nabuurs, E. Marchiori, “Gaussian interaction profile kernels for predicting drug-target interaction”, Bioinformatics, DOI:10.1093/bioinformatics/btr500, vol. 27, no. 21, pp. 30–36, 2011.

W. Fan, J. Shang, F. Li et al, “IDSSIM: an lncRNA functional similarity calculation model based on an improved disease semantic similarity method”, BMC Bioinformatics, DOI:10.1186/s12859-020-03699-9, vol. 21, pp. 1–14, 2020.

X. Chen, C. C. Yan, C. Luo et al, “Constructing lncrna functional similarity network based on lncrna-disease associations and disease semantic similarity”, Scientific Reports, DOI:10.1038/srep11338, vol. 5, no. 1, pp. 11338, 2015.

S. Köhler, S. Bauer, D. Horn et al, “Walking the interactome for prioritization of candidate disease genes”, American Journal Of Human Genetics, DOI:10.1016/j.ajhg.2008.02.013, vol. 82, no. 4, pp. 949–958, 2008.

P. Rajarajeswari, J. Moorthy, O.A. Beg, “Simulation of diabetic retinopathy utilizing convolutional neural networks”, Journal of Mechanics in Medicine and Biology, DOI:10.1142/S0219519422500117, vol. 22, no. 02, pp. 2250011, 2022.

Y. Gao, S. Shang, S. Guo et al, “Lnc2Cancer 3.0: an updated resource for experimentally supported lncRNA/circRNA cancer associations and web tools based on RNA-seq and scRNA-seq data”, Nucleic Acids Research, DOI:10.1093/nar/gkaa1006, vol. 49, no. D1, pp. D1251–D1258, 2021.

J. Chen, J. Lin, Y. Hu et al, “RNADisease v4. 0: an updated resource of RNA-associated diseases, providing RNA-disease analysis, enrichment and prediction”, Nucleic Acids Research, DOI:10.1093/nar/gkac814, vol. 51, no. D1, pp. D1397–D1404, 2023.

Published

2024-08-31

How to Cite

Ma, J., & Qin, T. (2024). Disease-IncRNA associations prediction based on fast random walk with restart in heterogeneous networks. IEEE Latin America Transactions, 22(9), 739–745. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/8836