Methodology Using Idle Capacity of Hydroelectric Substations for Sizing Floating Photovoltaic Plants

Authors

Keywords:

complementarity, energy planning, floating photovoltaic, hydroelectric

Abstract

Photovoltaic (PV) generation has emerged as an alternative for reducing environmental impacts. Recently, floating photovoltaic (FPV) configurations have gained popularity, utilizing the water surface of reservoirs as installation sites. Recognizing its potential, this paper proposes a methodology to harness the idle capacity of substation facilities in hydroelectric power plants (HPP) for sizing FPV plants, aiming for the maximal utilization of the substation's capacity and promoting complementarity with HPP generation. The study introduces a sizing proposal for FPV based on complementarity with the worst day of HPP generation within a defined period, aiming to utilize 100% of the substation's capacity. As a case study, the FPV potential is identified as 59.81 GWp for Belo Monte and 55.35 GWp for Itaipu. This approach seeks to enhance the overall efficiency and sustainability of power generation systems by integrating FPV with existing hydroelectric infrastructure.

Downloads

Download data is not yet available.

Author Biographies

Breno Bezerra Freitas, Universidade Federal de Ceará

Breno B. Freitas is a doctoral student in Electrical Engineering at Federal University of Ceará (UFC). He earned his Master's degree in 2021 and his undergraduate in Electrical Engineering at UFC in 2018. He is a member of the LEA at UFC.

Bruno Rodrigues Alves Bezerra, Universidade Federal do Ceará

Bruno R. A. Bezerra has a degree in Electrical Engineering (2023) from the University of Fortaleza (UNIFOR).

Carlos Alberto Teixeira Júnior, Universidade Federal do Ceará

Carlos A. Teixeira Júnior is a doctoral student in Engineering (UFC). Graduated in Electrical Engineering (UPE/2004).

Celso Florindo de Oliveira Júnior, Universidade Federal do Ceará

Celso F. de Oliveira Júnior has a degree in Mechanical Engineering (2021) from the Federal Institute (IFCE).

Dionízio Porfírio de Assis, Universidade Federal do Ceará

Dionizio P. de Assis is studying for a master's degree in Electrical Engineering at the UFC.

Edvaldo de Sousa Queiroz Filho, Universidade Federal do Ceará

Edvaldo de S. Queiroz Filho has a degree in Electrical Engineering (2018) from the UFC.

Felipe Teles do Nascimento, Universidade Federal do Ceará

Felipe T. do Nascimento is a doctoral student in Electrical Engineering at UFC. Has an Academic Master's Degree in Applied Sciences (2022) from the State University of Ceará (UECE).

Fernando Weslley Silva de Oliveira, Universidade Federal do Ceará

Fernando W. S. de Oliveira has a Master's degree in Mechanical Engineering (2021) and is studying for a PhD in Electrical Engineering, both at UFC.

Gabryel Ferreira Alves, Universidade Federal do Ceará

Gabryel F. Alves has a degree in Renewable Energy Engineering (2020) from the UFC.

João Victor Teixeira Alves, Universidade Federal do Ceará

João V. T. Alves has a degree in Renewable Energy Engineering (2022) from the UFC.

Marcos Felipe de Andrade Silva, Universidade Federal do Ceará

Marcos F. de A. Silva has a degree in Electrical Engineering (2022) UFC.

Milton Cezar da Silva, Universidade Federal do Ceará

Milton C. da Silva has a degree in Electrical Engineering from Unifanor 2022 and is studying for a Master's degree in Electrical Engineering at UFC.

Monilson de Sales Costa, Universidade Federal do Ceará

Monilson de S. Costa is a doctoral student in Electrical Engineering (UFC), a Master's student in Climatology (UECE), a specialist in Electrical Engineering: Power Systems (IBRA) and a graduate in Electrical Engineering (UFC).

Otacilio José de Macêdo Nunes, Universidade Federal do Ceará

Otacilio J. de M. Nunes has a master's degree in Applied Physical Sciences (2022) from UECE and is interested in Photovoltaic Solar Energy.

Paulo Cesar Marques de Carvalho, Universidade Federal do Ceará

Paulo C. M. Carvalho has a degree in Electrical Eng. from UFC (1989), a master's degree in Electrical Eng. from UFPB (1992) and a doctorate in Electrical Eng. from the University of Paderborn, Germany (1997). Full professor at DEE - UFC. CNPq researcher.

Rebeca Catunda Pereira, Universidade Federal do Ceará

Rebeca C. Pereira is a doctoral student in Electrical Engineering at UFC. She has an undergraduate degree (2010) and a Master's degree (2012) in Electrical Engineering (UFC).

References

E. B. Pereira; F. R. Martins; A. R. Gonçalves; R. S. Costa; F. J. L. Lima; R. Rüther; S. L. Abreu; G. M. Tiepolo; S. V. Pereira; J. G. Souza. Atlas Brasileiro de Energia Solar. 2. ed. São José dos Campos: INPE, 2017. https://doi.org/10.34024/978851700089

Associação Brasileira de Energia Solar (ABSOLAR). Infográfico ABSOLAR: Available: https://www.absolar.org.br/mercado/infografico/

M. Rosa-Clot, G. M. Tina and S. Nizetic. “Floating Photovoltaic Plants and Wastewater Basins: an Australian Project”. Energy Procedia, vol. 134, no. 9, pp. 664-674, 2017. https://doi.org/10.1016/j.egypro.2017.09.585

H. Zahida, et al. “Floating Solar Photovoltaic as Virtual Battery for Reservoir Based Hydroelectric Dams: A Solar-Hydro Nexus for Technological”. Energy Reports, vol. 8, pp. 610-621, 2022. https://doi.org/10.1016/J.Egyr.2022.08.088

Y. Zhou, et al. “An Advanced Complementary Scheme of Floating Photovoltaic and Hydropower Generation Flourishing Water-Food-Energy Nexus”. Applied Energy, vol. 275, 115389, 2020. https://doi.org/10.1016/j.apenergy.2020.115389

J. Farfan and C. Breyer. “Combining Floating Solar Photovoltaic Power Plants and Hydropower Reservoirs: A Virtual Battery of Great Global Potential”. Energy Procedia, vol. 155, no. 12, pp. 403-411, 2018. https://doi.org/10.1016/j.egypro.2018.11.038.

N. Lee, et al. “Hybrid Floating Solar Photovoltaics-Hydropower Systems: Benefits and Global Assessment of Potential”. Renewable Energy, vol. 162, pp. 1415-1427, 2020. https://doi.org/10.1016/J.Renene.2020.08.080

A. M. Ates. “Unlocking the Floating Photovoltaic Potential of Türkiye’s Hydroelectric Power Plants, Renewable Energy”. vol. 199, pp. 1495-1509, 2022. https://doi.org/10.1016/j.renene.2022.09.096

G. Mamatha and P. S. Kulkarni. “Assessment of Floating Solar Photovoltaic Potential in India’s Existing Hydropower Reservoirs”. Energy for Sustainable Development, vol. 69, pp 64-76. 2022. https://doi.org/10.1016/j.esd.2022.05.011

R. G. Sanchez, et al. Assessment of Floating Solar Photovoltaic Potential in Existing Hydropower Reservoirs in Africa”. Renewable Energy, vol. 169, pp 687-699. 2022. https://doi.org/10.1016/j.renene.2021.01.041

J. Haas et al. “Floating Photovoltaic Plants: Ecological Impacts Versus Hydropower Operation Flexibility”. Energy Conversion and Management, vol. 206. 112414, 2019. https://doi.org/10.1016/j.enconman.2019.112414

N. Ravichandran, N. Ravichandran and B. Panneerselvan. “Floating Photovoltaic System for Indian Artifcial Reservoirs—An Efective Approach to Reduce Evaporation and Carbon Emission”. International Journal of Environmental Science and Technology, vol.19, pp. 7951–7968, 2021. https://doi.org/10.1007/S13762-021-03686-4

D. Chirwa, R. Goyal and E. Mulenga. “Floating Solar Photovoltaic (FsSPV) Potential in Zambia Case Studies on Six Hydropower Power Plant Reservoirs”. Renewable Energy Focus, vol 44, pp 344-356, 2023. https://doi.org/10.1016/j.ref.2023.01.007

F. Piancó, et al. “Hydroelectric Operation for Hybridization with A Floating Photovoltaic Plant: A Case of Study”. Renewable Energy, vol. 201, pp. 285-95, 2022. https://doi.org/10.1016/j.renene.2022.10.077

S. Ogunjo, A Olusola and C. Olusegun. “Potential of Using Foating Solar Photovoltaic and Wind Farms for Sustainable Energy Generation in an Existing Hydropower Station in Nigeria”. Clean Technologies and Environmental Policy, vol. 25, pp. 1921-1934, 2022. https://doi.org/10.1007/S10098-023-02480-9

G. Kakoulaki, et al. “Benefits of Pairing Floating Solar Photovoltaics with Hydropower Reservoirs in Europe”. Renewable and Sustainable Energy Reviews. vol. 171, 2023. https://doi.org/10.1016/j.rser.2022.112989

P. S. F. Rodrigues, et al. “Estudo da Viabilidade Técnica de Implantação de Sistemas Fotovoltaicos Flutuantes em Reservatórios de Usinas Hidrelétricas – Plataforma Fotovoltaica Flutuante De Sobradinho (BA)”. Seminário Nacional de Produção e Transmissão de Energia Elétrica - XXV SNPTEE. Brasil, 2019.

R. A. Lima, et al. “Impacto da Geração de Plantas Fotovoltaicas Flutuantes Sobre a Matriz Energética de Estados do Semiárido Brasileiro”. Revista Brasileira De Energia. Brasil, vol. 29, nº 1, 2023. https://doi.org/10.47168/rbe.v29i1.778

C. A. Moraes, et al. “Floating Photovoltaic Plants as An Electricity Supply Option in the Tocantins-Araguaia Basin, Renewable Energy”. vol. 193, pp. 264-277, 2022. https://doi.org/10.1016/j.renene.2022.04.142

M. P. C. Lopes, et al. “Technical Potential of Floating Photovoltaic Systems on Artificial Water Bodies in Brazil”. Renewable Energy, vol. 181, pp 1023-1033, 2022. https://doi.org/10.1016/j.renene.2021.09.104

P. H. B. Silva and R. A. Shayani. “Estudo de Viabilidade Técnica de Usina Solar Fotovoltaica Flutuante para Suprir Consumo da Universidade de Brasília”. Congresso Brasileiro de Energia Solar – VIII CBENS. Brasil, 2020.

R. L. Andrade et al. “Etapas Construtivas de uma Estrutura Fotovoltaica Flutuante Desenvolvida no Brasil. Congresso Brasileiro de Energia Solar – VIII CBENS. Brasil, 2020.

M. A. E. Galdino and M. M. A. Olivieri. “Considerações sobre a Implantação de Sistemas Fotovoltaicos Flutuantes no Brasil”. Congresso Brasileiro De Energia Solar – VI CBENS. Brasil, 2016.

S. F. R. Pedro, et al. “Plataforma Fotovoltaica Flutuante de Sobradinho (BA) – Desafios e Estratégias de Implantação”. VIII Congresso Brasileiro de Energia Solar – VIII CBENS, 2020.

M. Galdino, et al. “Associação de Geração Fotovoltaica, Geração Hidroelétrica e Armazenamento de Energia na UHE Itumbiara – Projeto Sinergia Hidrossolar”. VIII Congresso Brasileiro de Energia Solar – VIII CBENS, 2020.

J. P. Reges, et al. Sizing Methodology of Floating Photovoltaic Plants in Dams of Semi-Arid Areas. J. Sol. Energy Eng., vol. 144, no 4, 041003, 2023. https://doi.org/10.1115/1.4052959

Operador Nacional do Sistema Elétrico – ONS, Histórico da Operação, ONS. Availabe: www.ons.org.br.

Capacity Factor. Science Direct. Available: https://www.sciencedirect.com/topics/engineering/capacity-factor

Itaipu Binacional, Geração. Available: www.itaipu.gov.br/ energia/geracao.

Norte Energia, UHE Belo Monte. Available: www.norteenergiasa.com.br/pt-br/uhe-belo-monte/a-usina.

Norte Energia. A História de Belo Monte – Cronologia. Available: https://www.norteenergiasa.com.br/pt-br/uhe-belo-monte/historico.

G. D. P. da Silva e M. J. R. Souza. “Estimativa de geração de energia através de um sistema fotovoltaico: implicações para um sistema flutuante no lago Bolonha, Belém-Pará”. Revista Brasileira de Energias Renováveis, vol. 6, nº 2, pp. 149-164, 2017. http://dx.doi.org/10.5380/rber.v6i2.46194

C. E. T. d. Neves, et al. “Análise dos índices de mérito de sistemas fotovoltaicos flutuantes em ambientes distintos - solo flutuante”. IX Congresso Brasileiro de Energia Solar – IX CBENS, 2022.

Agência Nacional de Águas e Saneamento Básico, Sistema de acompanhamento de reservatórios, ANA. Available: https://www.ana.gov.br/sar0/MedicaoSin.

Instituto Nacional de Pesquisas da Amazônia – INPA. Aproveitamento Hidrelétrico (AHE) Belo Monte – Estudo de Impacto Ambiental (EIA), pp. 130-131. Avaliable: http://philip.inpa.gov.br/publ_livres/Dossie/BM/DocsOf/EIA-09/Vol%2035/TOMO%206/Texto/Relat%C3% B3rio%.

Published

2024-08-31

How to Cite

Bezerra Freitas, B., Rodrigues Alves Bezerra, B., Teixeira Júnior, C. A., Florindo de Oliveira Júnior, C., Porfírio de Assis, D., de Sousa Queiroz Filho, E., Teles do Nascimento, F., Silva de Oliveira, F. W., Ferreira Alves, G., Teixeira Alves, J. V., de Andrade Silva, M. F., Cezar da Silva, M., de Sales Costa, M., de Macêdo Nunes, O. J., Marques de Carvalho, P. C., & Catunda Pereira, R. (2024). Methodology Using Idle Capacity of Hydroelectric Substations for Sizing Floating Photovoltaic Plants. IEEE Latin America Transactions, 22(9), 771–777. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/8802

Issue

Section

Electric Energy

Most read articles by the same author(s)