Glaucoma Grading Using Multimodal Imaging and Multilevel CNN
Keywords:
Glaucoma Diagnosis, Multimodal Imaging, Deep LearningAbstract
Glaucoma is considered the leading cause of blindness. Because there is no cure for the disease, treatment must begin promptly to prevent disease progression, which leads to severe visual impairment and, in some cases, total blindness. In this scenario, diagnosis in the early stages is essential and could be accomplished through screening exams. Recent studies have combined fundus images and Optical Coherence Tomography (OCT) volumes as indicators of disease progression in computer vision methods. In this work, we develop a method based on deep learning, which uses fundus images and OCT volumes to aid in detecting glaucoma at early or progressive stages. In this way, it can have clinical use, being able to be used as a tool not only for the detection of the disease but also that it helps in searching for more severe cases of the disease. As a result, the proposed method achieves 0.886 kappa score.
Downloads
References
H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” British journal of ophthalmology, vol. 90, no. 3, pp. 262–267, 2006.
Y.-C. Tham, X. Li, T. Y. Wong, H. A. Quigley, T. Aung, and C.-Y. Cheng, “Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis,” Ophthalmology, vol. 121, no. 11, pp. 2081–2090, 2014.
WHO, “World report on vision,” 2019. https://www.who.int/publications/i/item/9789241516570.
A. Sarhan, J. Rokne, and R. Alhajj, “Glaucoma detection using image processing techniques: A literature review,” Computerized Medical Imaging and Graphics, p. 101657, 2019.
P. Mehta, C. A. Petersen, J. C. Wen, M. R. Banitt, P. P. Chen, K. D. Bojikian, C. Egan, S.-I. Lee, M. Balazinska, A. Y. Lee, et al., “Automated detection of glaucoma with interpretable machine learning using clinical data and multimodal retinal images,” American Journal of Ophthalmology, vol. 231, pp. 154–169, 2021.
G. An, K. Omodaka, K. Hashimoto, S. Tsuda, Y. Shiga, N. Takada, T. Kikawa, H. Yokota, M. Akiba, and T. Nakazawa, “Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images,” Journal of healthcare engineering, vol. 2019, 2019.
J. Wu, H. Fang, F. Li, H. Fu, F. Lin, J. Li, L. Huang, Q. Yu, S. Song, X. Xu, et al., “Gamma challenge: Glaucoma grading from multimodality images,” arXiv preprint arXiv:2202.06511, 2022.
CBO, “Censo oftalmologico 2021,” 2021. https://cbo.net.br/2020/admin/docs_upload/034327Censocbo2021.pdf.
L. D. Nguyen, R. Gao, D. Lin, and Z. Lin, “Biomedical image classification based on a feature concatenation and ensemble of deep cnns,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–13, 2019.
J. Ma, B. Lv, Y. Li, P. Fan, X. Zhao, H. Yuan, and Y. Zhang, “Multimodal primary open angle glaucoma early diagnosing program based on clinical process,” 2021.
J. Xiong, F. Li, D. Song, G. Tang, J. He, K. Gao, H. Zhang, W. Cheng, Y. Song, F. Lin, et al., “Multimodal machine learning using visual fields and peripapillary circular oct scans in detection of glaucomatous optic neuropathy,” Ophthalmology, 2021.
H. Fang, F. Shang, H. Fu, F. Li, X. Zhang, and Y. Xu, “Multi-modality images analysis: A baseline for glaucoma grading via deep learning,” in International Workshop on Ophthalmic Medical Image Analysis, pp. 139–147, Springer, 2021.
Y. Li, M. El Habib Daho, P.-H. Conze, H. Al Hajj, S. Bonnin, H. Ren, N. Manivannan, S. Magazzeni, R. Tadayoni, B. Cochener, et al., “Multimodal information fusion for glaucoma and diabetic retinopathy
classification,” in Ophthalmic Medical Image Analysis: 9th International Workshop, OMIA 2022, Held in Conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, Proceedings, pp. 53–62, Springer, 2022.
H. Tian, S. Lu, Y. Sun, and H. Li, “Gc-net: Global and class attention blocks for automated glaucoma classification,” in 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), pp. 498–
, 2022.
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.
F. J. F. Batista, T. Diaz-Aleman, J. Sigut, S. Alayon, R. Arnay, and D. Angel-Pereira, “Rim-one dl: A unified retinal image database for assessing glaucoma using deep learning,” Image Analysis & Stereology, vol. 39, no. 3, pp. 161–167, 2020.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge: MIT Press, 2016. http://www.deeplearningbook.org.
R. Solovyev, A. A. Kalinin, and T. Gabruseva, “3d convolutional neural networks for stalled brain capillary detection,” Computers in Biology and Medicine, vol. 141, p. 105089, 2022.
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.
G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolutional networks,” CoRR, vol. abs/1608.06993, 2016.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Los Alamitos, CA, USA), pp. 770–778, IEEE Computer Society, jun 2016.
F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential modelbased optimization for general algorithm configuration,” in Learning and Intelligent Optimization: 5th International Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pp. 507–523, Springer, 2011.
O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4, p. e1249, 2018.
T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next generation hyperparameter optimization framework,” in Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.
J.-C. Mwanza, J. D. Oakley, D. L. Budenz, R. T. Chang, O. J. Knight, and W. J. Feuer, “Macular ganglion cell–inner plexiform layer: Automated detection and thickness reproducibility with spectral domain optical coherence tomography in glaucoma,” Investigative Ophthalmology and Visual Science, vol. 52, pp. 8323–8329, 10 2011.
M. McHugh, “Interrater reliability: The kappa statistic,” Biochemia medica : ˇcasopis Hrvatskoga društva medicinskih biokemiˇcara / HDMB, vol. 22, pp. 276–82, 10 2012.
R. Fan, K. Alipour, C. Bowd, M. Christopher, N. Brye, J. A. Proudfoot, M. H. Goldbaum, A. Belghith, C. A. Girkin, M. A. Fazio, et al., “Detecting glaucoma from fundus photographs using deep learning without
convolutions: Transformer for improved generalization,” Ophthalmology Science, vol. 3, no. 1, p. 100233, 2023.
O. C. Devecioglu, J. Malik, T. Ince, S. Kiranyaz, E. Atalay, and M. Gabbouj, “Real-time glaucoma detection from digital fundus images using self-onns,” IEEE Access, vol. 9, pp. 140031–140041, 2021.
P. Shanmugam, J. Raja, and R. Pitchai, “An automatic recognition of glaucoma in fundus images using deep learning and random forest classifier,” Applied Soft Computing, vol. 109, p. 107512, 2021.