Modular Advanced Metering Infrastructure to Reduce Electricity Theft and a Cluster-Based Illegal Loads Detection

Authors

  • Roberto Morales-Caporal Tecnológico Nacional de México/Instituto Tecnológico de Apizaco Apizaco, C.P. 90300, Tlaxcala, México https://orcid.org/0000-0002-6115-0454

Keywords:

AMI, LAN, NAN, mesh network, smart grid, smart meter, clustering

Abstract

This article introduces the development of a modu- lar advanced metering infrastructure (AMI) for a single-phase power system, focusing on the reduction of non-technical losses (NTLs). In emerging economies, electromechanical meters are within the reach of consumers, and can be easily tampered with. With the proposed modular AMI, the physical security of smart meters is increased, thereby reducing this practice. The hardware design and the functionality of each main component of the modular AMI are explained. In addition, a cluster-based strategy to detect illegal electrical loads directly connected to power distribution lines is presented. The detection algorithm does not require extensive processing or complicated analysis of a large amount of data. The experimental and numerical results confirm the functionality of the developed AMI, an adequate detection of energy theft, and the feasibility to reduce the NTLs.

Downloads

Download data is not yet available.

Author Biography

Roberto Morales-Caporal, Tecnológico Nacional de México/Instituto Tecnológico de Apizaco Apizaco, C.P. 90300, Tlaxcala, México

Roberto Morales Caporal (S'05-M'08-SM'14) received the B.Sc. degree in electromechanical engineering from the National Technological Institute of Mexico/Technological Institute of Apizaco (TecNM/ITA), Apizaco, México, in 1999, the M.Sc. degree in electrical engineering from the SEPI-Superior School of Mechanical and Electrical Engineering (ESIME), National Polytechnic Institute (IPN), Mexico City, Mexico, in 2001, and the Dr.-Ing. degree in electrical engineering from the University of Siegen, Siegen, Germany, in 2007.From 2001 to 2003, he was a Lecturer with the UPIITA, IPN. Since 2008, he is with TecNM/ITA. His areas of research interest include DSP-based digital control, control of power converters, hardware design and the IoT.He is a member of the National Research System (SNI) of Mexico.

References

R. Jiménez, T. Serebrisky, and J. Mercado, “Power lost: sizing electricity losses in transmission and distribution systems in Latin America and the Caribbean,” Inter-American Development Bank, 2014.

P. Massaferro-Saquieres, “Detección de pérdidas no ténicas en redes eléctricas en un contexto de migración tecnológica y maximizando el retorno económico,” PhD. Tesis, Universidad de la República, Montevi- deo, Uruguay, March 2022.

Y. Guo, C. Ten, S. Hu and W. W. Weaver, “Preventive maintenance for advanced metering infrastructure against malware propagation,” IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1314-1328, May 2016, DOI:10.1109/TSG.2015.2453342.

X. Yu and Y. Xue, “Smart grids: A cyber–physical systems perspective,” In Proc. IEEE, vol. 104, no. 5, pp. 1058-1070, May 2016, DOI:10.1109/JPROC.2015.2503119.

B. Castro Inclán, “Control unit for systems used to supervise and monitor the electric power supply,” Patent WO/2014/046531, March 2014.

R. Binz, R. Bracho, A. Anderson, M. Coddington, E. Hale, M. Ingram,

M. Martin, et al. “A report on the implementation of smart grids in Mexico”. Golden, CO, USA. NREL/TP-7A40-72699, Jan. 2019.

X. Xia, Y. Xiao, W. Liang and J. Cui, “Detection methods in smart meters for electricity thefts: A survey,” In Proc. IEEE, vol. 110, no. 2, pp. 273-319, Feb. 2022, DOI: 10.1109/JPROC.2021.3139754.

E. G. de Buda, “System for accurately detecting electricity theft,” U.S. Patent 12/351,978, Jan. 14, 2010.

S. McLaughlin, B. Holbert, A. Fawaz, R. Berthier and S. Zonouz, “A multi-sensor energy theft detection framework for advanced metering infrastructures,” IEEE J. Sel. Areas Commun., vol. 31, no. 7, pp. 1319- 1330, July 2013, DOI: 10.1109/JSAC.2013.130714.

K. Dineshkumar, et al., “Development of ARM processor based electricity theft control system using GSM network,” Int. Conf. Circuits, Power Comput. Tech. (ICCPCT), Nagercoil, India, pp. 1-6, July 2015.

A. Bin-Halabi, A. Nouh and M. Abouelela, “Remote detection and identification of illegal consumers in power grids,” IEEE Access, vol. 7, pp. 71529-71540, May 2019, DOI:10.1109/ACCESS.2019.2920080.

M. U. Saleem, et al., “Design, deployment and performance evaluation of an IoT based smart energy management system for demand side management in smart grid,” IEEE Access, vol. 10, pp. 15261-15278, Feb. 2022, DOI: 10.1109/ACCESS.2022.3147484.

S. Munawar et al., “Electricity theft detection in smart grids using a bybrid BiGRU–BiLSTM model with feature engineering-based preprocessing,” Sensors, vol. 22, no. 20, p. 7818, Oct. 2022, DOI: 10.3390/s22207818.

M. Buzau, J. Tejedor-Aguilera, P. Cruz-Romero and A. Gómez-Expósito, “Hybrid deep neural networks for detection of non-technical losses in electricity smart meters,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1254-1263, March 2020, DOI: 10.1109/TPWRS.2019.2943115.

E. U. Haq, J. Huang, H. Xu, K. Li and F. Ahmad, “A hybrid approach based on deep learning and support vector machine for the detection of electricity theft in power grids,” Energy Reports, vol. 7, no. 6, pp. 349-356, Nov. 2021, DOI: 10.1016/j.egyr.2021.08.038.

I. U. Khan, N. Javaid, C. J. Taylor and X. Ma, “Robust data driven analysis for electricity theft attack-resilient power grid," IEEE Trans. Power Syst., vol. 38, no. 1, pp. 537-548, Jan. 2023, DOI: 10.1109/TPWRS.2022.3162391.

I. U. Khan, N. Javeid, C. J. Taylor, K. A. A. Gamage and X. Ma, “A stacked machine and deep learning-based approach for analysing electricity theft in smart grids,” IEEE Trans. Smart Grid, vol. 13, no. 2, pp. 1633-1644, March 2022, DOI: 10.1109/TSG.2021.3134018.

L. J. Lepolesa, S. Achari and L. Cheng, “Electricity theft detection in smart grids based on deep neural network,” IEEE Access, vol. 10, pp. 39638-39655, April 2022, DOI: 10.1109/ACCESS.2022.3166146.

A. Takiddin, M. Ismail and E. Serpedin, “Robust data-driven detection of electricity theft adversarial evasion attacks in smart grids,” IET Smart Grid, vol. 14, no. 1, pp. 663-676, Jan. 2023, DOI: 10.1109/TSG.2022.3193989.

X. Xia, J. Lin, Y. Xiao, J. Cui, Y. Peng and Y. Ma, “A control-chart- based detector for small-amount electricity theft (SET) attack in smart grids,” IEEE Internet Things J., vol. 9, no. 9, pp. 6745-6762, May 2022, DOI: 10.1109/JIOT.2021.3113348.

P. Jokar, N. Arianpoo and V. C. M. Leung, “Electricity theft detection in AMI using customers’ consumption patterns,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 216-226, Jan. 2016, DOI: 10.1109/TSG.2015.2425222.

K. Zheng, Y. Wang, Q. Chen and Y. Li, “Electricity theft detecting based on density-clustering method,” Dec. 2017 IEEE Innovative Smart Grid Techs-Asia (ISGT-Asia), Auckland, NZ., 2017, pp. 1-6, DOI: 10.1109/ISGT-Asia.2017.8378347.

A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,” Science, vol. 344, no. 6191, pp. 1492-1496, Jun. 2014, DOI: 10.1126/science.1242072.

C. H. Park and T. Kim, “Energy theft detection in advanced metering infrastructure based on anomaly pattern detection,” Energies, vol. 13, no. 15, pp. 1-10, Jul. 2020, DOI: 10.3390/en13153832.

Y. Peng, et al., “Electricity theft detection in AMI based on clustering and local outlier factor,” IEEE Access, vol. 9, pp. 107250-107259, Aug. 2021, DOI: 10.1109/ACCESS.2021.3100980.

S. Jain, et al., “Rule-based classification of energy theft and anomalies in consumers load demand profile,” IET Smart Grid, vol. 2, no. 4, pp. 612-624, May 2022, DOI: 10.1049/iet-stg.2019.0081.

N. Duan, C. Huang, C. -C. Sun and L. Min, “Smart meters enabling voltage monitoring and control: the last-mile voltage stability issue,” IEEE Trans. Industr. Inform., vol. 18, no. 1, pp. 677-687, Jan. 2022, DOI:10.1109/TII.2021.3062628.

M. Faheem, et al., “Smart grid communication and information technologies in the perspective of industry 4.0: opportunities and challenges,” Computer Science Review, vol. 30, pp. 1-30, Nov. 2018, DOI:10.1016/j.cosrev.2018.08.001.

Energy Regulatory Commission. Resolution No. RES/999/2015.

Mexican Official Standard NOM-001-CRE/SCFI-2019.

Comisión Federal de Electricidad. Sistema de infraestructura avanzada de medición (AMI). Especificación CFE G0100-05, April 2015.

R. Morales-Caporal, et al., “Development and implementation of a relay switch based on Wi-Fi technology,” 17th Int. Conf. Elec. Eng., Comp. Sci. and Aut. Control, (CCE), CDMX, México, Nov. 2020, DOI:10.1109/CCE50788.2020.9299142.

IPC. Homepage. [Online] Available: https://www.ipc.org (2019/03/09).

Texas Instruments:Implementation of a low-cost three-phase electronic watt-hour meter using the MSP430F67641. Application Report, SLAA621C, March 2014.

A. Pérez-López, “Diseño de un medidor inteligente de electricidad,” M.Sc. Tesis, TecNM-Ins. Tec. de Apizaco, Tlax., México, Aug. 2017.

Microchip Technology, Inc. ATSAM4CMP32. Datasheet, Oct. 2016

Microchip: ATSAM4C Series. Dual Arm® Cortex® M4 Core SOC with advanced security features for residential and C&I smart meters, 2021.

Microchip: ATSENSE-301 Interfacing Guidelines, Jun. 2016.

Tecnologías EOS. Presentacio_n_EOS_Eficiencia.pdf. [Online] Available: https://www.gob.mx/cms/uploads/attachment/file/344256/ Presentacio_n_EOS_Eficiencia.pdf. (2022/11/07).

J. E. Quiriz-López, “Diseño e implementación de un módulo de comu- nicación basado en RF y 6LoWPAN para el envío de datos a la CFE,” M.Sc. Tesis, TecNM-Ins. Tec. de Apizaco, Tlax., México, Dec. 2017.

Atmel Co., “Low power, 700/800/900MHz transceiver for ZigBee, IEEE 802.15.4, 6LoWPAN, and ISM applications,” Rev.:42002E–MCU Wireless, Jun. 2017.

Atmel Co.: SAM4S Series. Datasheet.pdf, Jun. 2017.

Tecnologías EOS. Gabinete modular de medición. Ficha técnica. [Online] Available: https://tec-eos.com/v1/wp-content/uploads/2018/09/ FICHA-TECNICA-GABINETE-PARA-MEDIDOR.pdf. (2022/11/07).

N. Kushalnagar, G. Montenegro and C. Schumacher, “IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals,” RFC 4919, pp 1-12, 2007.

D. Harkins, “Authentication of equals: a secure, password-based key exchange for mesh networks,” 2nd Int. Conf. Sensor Techs. and Apps., Cap Esterel, France, 2008, DOI:10.1109/ SENSORCOMM.2008.131.

QiQi Duan. Testing Framework, DensityClust, MATLAB Central File Exchange. Nov. 2015.

Comisión Federal de Electricidad. Watthorímetros monofásicos y polifásicos electrónicos. Especificación CFE GWH00-78, Jan. 2006.

Published

2023-03-23

How to Cite

Morales-Caporal, R. (2023). Modular Advanced Metering Infrastructure to Reduce Electricity Theft and a Cluster-Based Illegal Loads Detection. IEEE Latin America Transactions, 21(4), 579–587. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/7618

Issue

Section

Electric Energy