Mental Health Prediction from Social Media Text Using Mixture of Experts
Keywords:
Natural Language Processing, Text Classification, Mental health, Depression, Anxiety disorderAbstract
Predicting mental health statuses from social media text is a well-known Natural Language Processing (NLP) task. In this work, we focus on the issue of depression and anxiety disorder prediction from Twitter by comparing a more conventional approach based on engineered features with a data-oriented alternative based on mixture of specialists with transformer language models. Results from a large corpus of depression/anxiety self-disclosed diagnoses in the Portuguese language are reported, and a feature importance analysis is carried out to provide further insights into these tasks.
Downloads
References
Helena Caseli helenacaseli@ufscar.br (Universidade Federal de São Carlos)
Gustavo Paiva Guedes e Silva (gustavo.silva@cefet-rj.br) (CEFET-RJ)
Valéria Feltrim valeria.feltrim@gmail.com (Universidade de Maringá)
Vladia C M Pinheiro vladiacelia@unifor.br (Universidade de Fortaleza)
Ariadne Carvalho ariadne@ic.unicamp.br (UNICAMP)
Nadia Felix nadia.felix@ufg.br (Universidade Federal de Goiás)
Renata Vieira renatav@uevora.pt (Universidade de Évora, Portugal)
Evandro Eduardo Seron Ruiz evandro@usp.br (USP Ribeirão Preto)