Identification of Drivability Failures Using Adaline in an ECU

Authors

  • Gabriel Calais Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n - Campus Universitário, Viçosa - MG, 36570-900 https://orcid.org/0000-0002-5118-3025
  • Ronaldo Marinho Grupo Stellantis S/A, Avenida do Contorno, 3455 - Paulo Camilo, Betim - MG, 32669-900
  • Rodolpho Neves Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n - Campus Universitário, Viçosa - MG, 36570-900 https://orcid.org/0000-0002-0101-483X
  • Heverton Pereira Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n - Campus Universitário, Viçosa - MG, 36570-900 https://orcid.org/0000-0003-0710-7815

Keywords:

Adaline, entropy, multiresolution, transient analysis, wavelet transform

Abstract

Abnormalities in fuel injection systems affect the drivability of vehicles, blemishing the driver's maneuvering experience or the smoothness of the response of these vehicles under different operating conditions. With the technological advances achieved by the automobile industry, objective methods for detecting anomalies in vehicle drivability have been studied over the last few years, with emphasis on methodologies using time-frequency analysis with wavelet transform. When performing an extraction of characteristics through wavelet decomposition aiming to detect abrupt transient variations, it becomes possible to improve the drivability of a vehicle identifying the occurrence of failures by using the energy of the decomposed signal. Therefore, using the concepts of continuous wavelet transform and entropy of information, this work makes a time-frequency analysis of the rotation signal of an internal combustion engine. The samples collected from the motor are standardized, the continuous wavelet transform is calculated and, finally, the entropy of the transformed signal is measured. Thus, the possibility of implementing an Adaline model capable of detecting the presence, or not, of abrupt changes in these signals is verified, and later, it can be embedded in an electronic control unit (ECU). The results show that the use of the Log Energy entropy as an input of the Adaline model is promising, granting 100% of accuracy on the dataset studied.

Downloads

Download data is not yet available.

Author Biographies

Gabriel Calais, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n - Campus Universitário, Viçosa - MG, 36570-900

Estudante de Engenharia Elétrica na Universidade Federal de Viçosa (UFV), seus interesses de pesquisa são Modelagem de Sistemas Dinâmicos e Inteligência Artificial

Ronaldo Marinho, Grupo Stellantis S/A, Avenida do Contorno, 3455 - Paulo Camilo, Betim - MG, 32669-900

Ronaldo Quintão Marinho recebeu o título de mestre em engenharia pelo Centro Federal de Educação Tecnológica de Minas Gerais - CEFET MG, Especialista em sistemas Eletro-Eletrônicos pelo CEFET-MG e Engenheiro Eletricista pela PUC-MG. Atua como Engenheiro de Desenvolvimento de Produto na Indústria Automobilística desde 2006 (Grupo Stellantis S/A) com experiência em Proteção de Sistemas elétricos em indústrias em geral (GE)

Rodolpho Neves, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n - Campus Universitário, Viçosa - MG, 36570-900

Rodolpho Vilela Alves Neves recebeu o grau de Bacharel em Engenharia Elétrica pela Universidade Federal de Viçosa (UFV), Viçosa, Brasil, em 2011, e os graus M.Sc. e D.Sc. em Engenharia Elétrica pela Universidade de São Paulo (EESC/USP), São Carlos, Brasil, em 2013 e 2018, respectivamente. De 2015 a 2016, ele esteve como Pesquisador Visitante na Aalborg University, Dinamarca. Atualmente, é Professor Adjunto no Departamento de Engenharia Elétrica na UFV. Seus interesses de pesquisa incluem controle inteligente de sistemas dinâmicos e gerenciamento de microrredes de energia

Heverton Pereira, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n - Campus Universitário, Viçosa - MG, 36570-900

Heverton Augusto Pereira possui graduação em Engenharia Elétrica (2007) pela Universidade Federal de Viçosa (UFV), mestrado em Engenharia Elétrica (2009) pela Universidade de Campinas (UNICAMP) e doutorado em Engenharia Elétrica (2015) pela Universidade Federal de Minas Gerais (UFMG). Realizou doutorado sanduíche (2014) na Aalborg University, Dinamarca. Desde 2009 é professor na Universidade Federal de Viçosa. Seus principais interesses de pesquisa incluem conversores conectados à rede para sistemas de energia fotovoltaica e eólica e sistemas de transmissão de alta tensão baseados em MMC

References

C. Jauch, K. Bovee, S. Tamilarasan, L. Güvenc, and G. Rizzoni, “Modeling of the osu ecocar 2 vehicle for drivability analysis,”

IFAC-PapersOnLine, vol. 48, no. 15, pp. 300–305, 2015.

W. W. Pulkrabek, “Engineering fundamentals of the internal combustion engine,” 2004.

R. Dorey and C. Holmes, “Vehicle driveability-its characterisation and measurement,” SAE Technical Paper, Tech. Rep., 1999.

E. Cacciatori, “Evaluating the impact of driveability requirements on the performance of an energy management control architecture for a hybrid electric vehicle,” 2006.

D. F. de Arruda Santiago and R. Pederiva, “Influência da resolução tempo-freqüência da wavelet de morlet no diagnóstico de falhas de

máquinas rotativas.” Mecánica Computacional, pp. 2538–2550, 2003.

H. Zhang and W. Li, “A new method of sensor fault diagnosis based on a wavelet packet neural network for hybrid electric vehicles,” in

9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2016,

pp. 1143–1147.

A. Zabihi-Hesari, S. Ansari-Rad, F. A. Shirazi, and M. Ayati, “Fault detection and diagnosis of a 12-cylinder trainset diesel engine based on vibration signature analysis and neural network,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, vol. 233, no. 6, pp. 1910–1923, 2019.

R. Q. Marinho, H. A. Pereira, L. B. Felix, and G. A. Rodrigues, Detecç¯ao de Falhas de Dirigibilidade Veicular Através da Análise de

Tempo-Frequência de Oscilaç¯oes do Sinal de Giro de um Motor a Combust¯ao Interna. XIII SBAI - Simpósio Brasileiro de Automaç¯ao

Inteligente, 2017.

P. Schoeggl and E. Ramschak, “Vehicle driveability assessment using neural networks for development, calibration and quality tests,” SAE Technical Paper, Tech. Rep., 2000.

L. Xiang and A. Hu, “Comparison of methods for different time-frequency analysis of vibration signal.” J. Softw., vol. 7, no. 1,

pp. 68–74, 2012.

M. Ralston, M. Rauch-Davies, K. Li-Chun, X. Hui-Ping, and Y. Di-Sheng, “General method to reduce cross-term interference in the

wigner-ville decomposition,” in 2007 SEG Annual Meeting. OnePetro, 2007.

J. E. Castilho, M. Domingues, O. Mendes, and A. Pagamisse, “Introduçao ao mundo das wavelets,” Sociedade Brasileira de

matemática Aplicada e Computacional, Sao Carlos, 2012.

R. Merry and M. Steinbuch, Wavelet theory and applications: literature study. Eindhoven University of Technology, 2005.

S. Sarkar, S. Das, and P. Purkait, “Wavelet and SFAM based classification of induction motor stator winding short circuit faults and

incipient insulation failures,” in 2013 IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). IEEE, 2013, pp. 237–242.

R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis selection,” IEEE Transactions on information theory, vol. 38, no. 2, pp. 713–718, 1992.

S. Raghu, N. Sriraam, and G. P. Kumar, “Effect of wavelet packet log energy entropy on electroencephalogram (eeg) signals,” International Journal of Biomedical and Clinical Engineering (IJBCE), vol. 4, no. 1, pp. 32–43, 2015.

S. Aydın, H. M. Sarao˘glu, and S. Kara, “Log energy entropy-based eeg classification with multilayer neural networks in seizure,” Annals of biomedical engineering, vol. 37, no. 12, p. 2626, 2009.

MathWorks. (2005) Wentropy, entropy (wavelet packet). [Online]. Available: https://www.mathworks.com/help/wavelet/ref/wentropy.html

I. N. Da Silva, D. H. Spatti, and R. A. Flauzino, “Redes neurais artificiais para engenharia e ciências aplicadas-curso prático,” São Paulo: Artliber, 2010.

Published

2022-12-21

How to Cite

Calais, G., Marinho, R., Neves, R., & Pereira, H. (2022). Identification of Drivability Failures Using Adaline in an ECU. IEEE Latin America Transactions, 21(2), 344–350. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/7063