Analysis of Scientific Production on the Use of Big Data Analytics in Performance Measurement Systems



Bibliometric Analysis, Performance Measurement Systems, Performance Measures, Industry 4.0, Big Data Analytics


Performance measurement systems have a critical role in organizations’ management, transforming data into relevant information for decision makers. In recent decades, the amount of data and information generated and shared has increased immensely, providing unprecedented opportunities and challenges for such systems. Faced with this scenario, this article aims to analyze the use of big data analytics in performance measurement systems to clarify the nexus between them. Furthermore, the aim is also to identify the trends and opportunities for future research. To achieve that, we carried a scientific map out using bibliometric analysis. The major results of the research show that the use of big data analytics in PMS has increased in recent years without considering the performance measurement systems’ characteristics. Incorporating artificial intelligence technologies such as machine learning and deep learning could improve the domain, creating opportunities for empirical works such as the use of unstructured data and applications in Industry 4.0.


Download data is not yet available.

Author Biographies

Junior Assandre, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brasil

Bachelor's Degree in Business Administration and Master's in Management and Public Systems (2015). He is currently a doctoral candidate in Industrial Engineering at the University Federal of Sao Carlos. His research interest are: Measurement System Performance and Big Data Analytics for Performance Measurement.

Roberto Martins, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brasil

Bachelor, Master Science, and Doctorate degress in Industrial Engineering from University of Sao Paulo. He is currently a Full Professor at the Industrial Engineering Department of the Federal University of Sao Carlos. His research interests are: performance measurement systems for sustainable supply chain management, business performance analytics.


K. Bhadani, G. Asbjörnsson, E. Hulthén and M. Evertsson, “Development and implementation of key performance indicators for aggregate production using dynamic simulation”, Minerals Engineering, vol. 145, pp. 106065, 2020, doi: 10.1016/j.mineng.2019.106065.

S. S. Kamble and A. Gunasekaran, “Big data-driven supply chain performance measurement system: a review and framework for implementation,” Int. J. Prod. Res., vol. 58, no. 1, pp. 65–86, 2020, doi: 10.1080/00207543.2019.1630770.

M. Bourne, M. Franco-Santos, P. Micheli, and A. Pavlov, “Performance measurement and management: a system of systems perspective,” Int. J. Prod. Res., vol. 56, no. 8, pp. 2788–2799, 2018, doi: 10.1080/00207543.2017.1404159.

A. Neely, M. Gregory and K. Platts, “Performance measurement system design: a literature review and research agenda”, Int. J. Oper. Prod. Manag., vol. 15, no. 4, pp. 80-116, 1995.

D.M. Gutierrez, L.F. Scavarda, L. Fiorencio and R.A. Martins, “Evolution of the performance measurement system in the Logistics Department of a broadcasting company: An action research”, Int. J. Prod. Econ., vol. 160, pp. 1-12, 2015, doi: 10.1016/j.ijpe.2014.08.012.

A. Taylor and M. Taylor, “Antecedents of effective performance measurement system implementation: an empirical study of UK manufacturing firms”, Int. J. Prod. Res, vol. 51, no. 18, pp. 5485-5498, 2013, doi: 10.1080/00207543.2013.784412.

P.C. Van Fenema and B.M. Keers, ”Interorganizational Performance Management: A Co‐evolutionary Model”, Int. J. Manag. Reviews, vol. 20, no. 3, pp. 772-799, 2018, doi: 10.1111/ijmr.12180.

C. Forza and F. Salvador, "Assessing some distinctive dimensions of performance feedback information in high performing plants", Int. J. Oper. Prod. Manag., vol. 20 no. 3, pp. 359-385, 2000, doi: 10.1108/01443570010308112.

P. Ghavami, Big Data Analytics Methods: Analytics Techniques in Data Mining, Deep Learning and Natural Language Processing. 2nd Edition, Walter de Gruyter GmbH & Co KG, 2019.

M. Franco‐Santos et al., "Towards a definition of a business performance measurement system", Int. J. Oper. Prod. Manag., vol. 27 no. 8, pp. 784-801, 2007,

E. Siow, T. Tiropanis and W. Hall, “Analytics for the internet of things: A survey”, ACM computing surveys (CSUR), vol. 51, no. 4, pp. 1-36, 2018, doi: 10.1145/3204947.

F. Franceschini et al., “Designing performance measurement systems”, Management for Professionals. Springer Nature, 2019.

P. Zikopoulos, C. Eaton, D. Deroos, T. Deutsch, and G. Lapis, Understanding Big Data: analytics for enterprise class Hadoop and streaming data. McGraw-Hill, 2012.

K.S. Divya, P. Bhargavi and S. Jyothi, “Machine learning algorithms in big data analytics”, Int. J. Comput. Sci. Eng, vol. 6, no. 1, pp. 64-70, 2018.

B. Marr, “Big Data: Using SMART big data, analytics and metrics to make better decisions and improve performance”, John Wiley & Sons, 2015.

H.J. Jang, J. Sim, Y. Lee and O. Kwon, “Deep sentiment analysis: Mining the causality between personality-value-attitude for analyzing business ads in social media”, Expert Syst. appl., vol. 40, no. 18, pp. 7492-7503, 2013, doi: 10.1016/j.eswa.2013.06.069.

S. Tanwar, S. Tyagi and N. Kumar, eds. Multimedia big data computing for IoT applications: concepts, paradigms and solutions. Vol. 163. Springer, 2019.

G. Wang, A. Gunasekaran, E. W. T. Ngai, and T. Papadopoulos, “Big data analytics in logistics and supply chain management: certain investigations for research and applications,” Int. J. Prod. Econ., vol. 176, pp. 98–110, 2016, doi: 10.1016/j.ijpe.2016.03.014.

R. Mello and R.A. Martins, “Can Big Data Analytics Enhance Performance Measurement Systems?”,IEEE Eng. Manag. Review, vol. 47, no. 1, pp. 52-57, 2019, doi: 10.1109/EMR.2019.2900645.

A. Alexander, M. Kumar and H. Walker, "A decision theory perspective on complexity in performance measurement and management", Int. J. Oper. Prod. Manag., vol. 38, No. 11, pp. 2214-2244, 2018, doi: 10.1108/IJOPM-10-2016-0632.

P. Russom et al., “Big data analytics”, TDWI best practices report, fourth quarter, vol. 19, no. 4, pp. 1-34, 2011.

A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and analytics”, Int. J inf. manag., v. 35, no. 2, pp. 137-144, 2015, doi: 10.1016/j.ijinfomgt.2014.10.007.

C. Antoniou et al., “Towards a generic benchmarking platform for origin–destination flows estimation/updating algorithms: Design, demonstration and validation”, Trans. Res. Part C: Emerging Technologies, vol. 66, pp. 79-98, 2016, doi: 10.1016/j.trc.2015.08.009.

R. Kitchin,“Big Data, New Epistemologies and Paradigm Shifts”, Big Data and Society, vol.1, no.1, pp.1–12, 2014, doi:10.1177/2053951714528481.

H. Chen, R. H. L. Chiang, and V. C. Storey, “Business intelligence and analytics: from big data to big impact,” MIS Q., vol. 36, no. 4, pp. 1165–1188, 2012.

S. Khanra, A. Dhir and M. Mäntymäki, “Big data analytics and enterprises: a bibliometric synthesis of the literature”, Enterprise Inf. Systems, pp. 1-32, 2020, doi: 10.1080/17517575.2020.1734241.

M. Kennerley and A. Neely, “Measuring performance in a changing business environment,” Int. J. Oper. Prod. Manag., vol. 23, no. 2, pp. 213–229, 2003, doi: 10.1108/01443570310458465.

M. Kennerley and A. Neely, "Performance measurement frameworks: a review." Business performance measurement: Theory and practice, pp. 145-155, 2002: 145-155 , doi: 10.1108/0144357031045846.

H. Kagermann, W. Wahlster, and J. Helbig, “Recommendations for implementing the strategic initiative Industrie 4.0,” 2013.

U. Sivarajah, M.M. Kamal, Z .Irani and V. Weerakkody,”Critical analysis of Big Data challenges and analytical methods”, J. Bus. Res., vol 70, pp. 263-286, 2017, doi: 10.1016/j.jbusres.2016.08.001.

M. Gupta and J. F. George, “Toward the development of a big data analytics capability,” Inf. Manag., vol. 53, no. 8, pp. 1049–1064, 2016, doi: 10.1016/

R.C. Mergulhão and R.A.Martins, “Relação entre sistemas de medição de desempenho e projetos Seis Sigma: estudo de caso múltiplo”, Production, vol. 18, no. 2, pp. 342-358, 2008.

L. Liu et al., “Deep learning for generic object detection: A survey”, Int. J. of computer vision, vol. 128, no. 2, pp. 261-318, 2020, doi: 10.1007/s11263-019-01247-4.

D. Chong, H Shi, “Big data analytics: a literature review”. Journal Manag. Analytics, vol. 2, no. 3, pp. 175-201, 2015, doi:/10.1080/23270012.2015.1082449.

K. Amasyali, and M.E. Nora M, "A review of data-driven building energy consumption prediction studies." Renewable and Sustainable Energy Reviews, vol.81, pp. 1192-1205, 2018, doi: 10.1016/j.rser.2017.04.095.

M. Aria and C. Cuccurullo, “Package ‘Bibliometrix”, 2020 [Online]. Available: .pdf/

B.M. Beamon, “Measuring supply chain performance,” Int. J. Oper. Prod. Manag., vol. 19, no. 3, pp. 275–292, 1999, doi: 10.1108/01443579910249714.

A. Behl and P. Dutta, “Humanitarian supply chain management: a thematic literature review and future directions of research”, Annals of Operations Research, vol. 283, no. 1, pp. 1001-1044, 2019, doi: 10.1007/s10479-018-2806-2

L. Bornmann, H.D. Daniel, “Does the h-index for ranking of scientists really work?”, Scientometrics, vol. 65, pp. 391–392, 2005, doi: 10.1007/s11192-005-0281-4.

K. Singh, S.C. Guntuku, A. Thakur and C. Hota, “Big Data Analytics framework for Peer-to-Peer Botnet detection using Random Forests”, Information Sciences, vol. 278, pp. 488-497, 2014, doi: 10.1016/j.ins.2014.03.066.

D.E. Rossetto et al., "Structure and evolution of innovation research in the last 60 years: review and future trends in the field of business through the citations and co-citations analysis", Scientometrics, vol. 115, pp. 1329–1363, 2018, doi: 10.1007/s11192-018-2709-7.

D. Tranfield, D. Denyer and P. Smart, “Towards a methodology for developing evidence informed management knowledge by means of systematic review”, British Journal Manag., vol. 14 no. 3, pp. 207-222, 2003,

S. Talwar, P. Kaur and F.S. Wamba, “Big Data in operations and supply chain management: a systematic literature review and future research agenda”, Int. J. Prod. Res, vol. 59, no. 11, pp. 3509-3534, 2021, doi: 10.1080/00207543.2020.1868599.

M. Chen, “The influence of big data analysis of intelligent manufacturing under machine learning on start-ups enterprise”, Enterprise Inf. Systems, pp. 1-16, 2019, doi: 10.1080/17517575.2019.1694180.

M. Bourne, J. Mills, M. Wilcox, A. Neely, and K. Platts, “Designing, implementing and updating performance measurement systems,” Int. J. Oper. Prod. Manag., vol. 20, no. 7, pp. 754–771, 2000, doi: 10.1108/01443570010330739.

M. Bourne, A. Neely, J. Mills, and K. Platts, “Implementing performance measurement systems: a literature review,” Int. J. Bus. Perform. Manag., vol. 5, no. 1, pp. 1–24, 2003, doi: 10.1504/IJBPM.2003.002097.

R. Mello, L. Leite and R.A. Martins, “Is Big Data the Next Big Thing in Performance Measurement Systems?”, In: Industrial & Systems Engineering Research Conference, Montreal, 2014.

R. Soltanpoor and T. Sellis, “Prescriptive Analytics for Big Data”, In: Databases Theory and Applications. ADC 2016. Lecture Notes in Computer Science(), vol 9877. Springer, doi: 10.1007/978-3-319-46922-5_19.

E. K. JUUSO, “Smart Adaptive Big Data Analysis with Advanced Deep Learning”, Open Engineering, vol. 8, no. 1, pp. 403-416, 2018,

S. LaValle, E. Lesser, R. Shockley, M. S. Hopkins, and N. Kruschwitz, “Big Data, analytics and the path from insights to value,” MIT Sloan Management Review, vol. 52, no. 2, pp. 21–31, 2011.

S. Raschka and V. Mirjalili, Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd, 2019.

M. Rüßmann et al., “Industry 4.0: the future of productivity and growth in manufacturing,” 2015. [Online]. Available:

U.S. Bititci, U. Turner and C. Begemann, "Dynamics of performance measurement systems", Int. J. Oper. Prod. Manag., vol. 20 no. 6, pp. 692-704, 2000, doi: 10.1108/01443570010321676.

D. Appelbaum, A. Kogan, M. Vasarhelyi, and Z. Yan, “Impact of business analytics and enterprise systems on managerial accounting,” Int.J. Account. Inf. Syst., vol. 25, pp. 29–44, 2017, doi: 10.1016/j.accinf.2017.03.003

L. Ardito, V. Scuotto, M. Del Giudice and A.M. Petruzzelli, "A bibliometric analysis of research on Big Data analytics for business and management", Management Decision, vol. 57 no. 8, pp. 1993-2009, 2019, doi: 10.1108/MD-07-2018-0754

P. Pradhan, "Science mapping and visualization tools used in bibliometric & scientometric studies: An overview.", 2017.

I. Portugal, P. Alencar and D. Cowan, “The use of machine learning algorithms in recommender systems: A systematic review”, Expert Syst. Appl., vol. 97, pp. 205-227, 2018, doi: 10.1016/j.eswa.2017.12.020.

J. Lee, B. Bagheri, and H. A. Kao, “A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems,” Manuf. Lett., vol. 3, pp. 18–23, 2015, doi: 10.1016/j.mfglet.2014.12.001.

T. Verbraken, C. Bravo, R. Weber and B. Baesens, “Development and application of consumer credit scoring models using profit-based classification measures”, European J. Oper. Res., vol. 238, no. 2, pp. 505-513, 2014, doi: 10.1016/j.ejor.2014.04.001.

V.G. Venkatesh et al., “System architecture for blockchain based transparency of supply chain social sustainability”, Robotics and Computer-Integrated Manufacturing, vol. 63, pp. 101896, 2020, doi: 10.1016/j.rcim.2019.101896.

S.A.S. Vanz, I.R.C. Stumpf, “Procedimentos e ferramentas aplicados aos estudos bibliométricos'', Informação & Sociedade: estudos, vol. 20, no. 2, pp. 67-75, 2010,

N.J. Van Eck and L. Waltman, “VOSviewer manual”, Leiden: Univeristeit Leiden, vol. 1, no. 1, pp. 1-53, 2013.

M. A. Waller and S. E. Fawcett, “Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management,” J. Bus. Logist., vol. 34, no. 2, pp. 77–84, 2013, doi: 10.1111/jbl.12010.

G.M. Zanghelini, “Análise da evolução dos temas de pesquisa da ACV no Brasil baseada na relação de co-words”, Revista Latino-Americana em Avaliação do Ciclo de Vida, vol. 1, n. Especial, pp. 34, 2017.

I. Zupic and T. Čater, “Bibliometric methods in management and organization,” Organ. Res. Methods, vol. 18, no. 3, pp. 429–472, 2015, doi: 10.1177/1094428114562629.

S. Lima and F.A. Carlos Filho, "Bibliometric analysis of scientific production on sharing economy", Revista de Gestão, vol. 26 no. 3, pp. 237-255, 2019, doi: 10.1108/REGE-01-2019-0018

H. Mousannif, H. Sabah, Y. Douiji and Y. Oulad Sayad, "Big data projects: just jump right in!", Int. J. of Pervasive Computing and Communications, vol. 12 no. 2, pp. 260-288, 2016, doi: 10.1108/IJPCC-04-2016-0023.

K. Lepenioti et al. “Prescriptive analytics: Literature review and research challenges”, Int. J. of Information Management, vol. 50, pp. 57-70, 2020, doi: 10.1016/j.ijinfomgt.2019.04.003.

P. Ingwersen, “Bibliometrics/Scientometrics and IR. A methodological bridge through visualization”, 2011.

J. A. Moral-Muñoz, E. Herrera-Viedma, A. Santisteban-Espejo and M.J. Cobo, “Software tools for conducting bibliometric analysis in science: An up-to-date review”, Profesional Información, vol. 29, no.1, doi: 10.3145/epi.2020.ene.03.

A. Neely, M. Gregory and K. Platts, “Performance measurement system design: a literature review and research agenda”, Int. J. Oper. Prod. Manag., vol.25, no. 12, p. 1228–1263, 2005, doi: 10.1108/01443570510633639.

N.K. Dev, R. Shankar, R. Gupta and D. Jingxin, “Multi-criteria evaluation of real-time key performance indicators of supply chain with consideration of big data architecture”, Computers & Industrial Engineering, vol. 128, pp. 1076-1087, 2019, doi: 10.1016/j.cie.2018.04.012.

A. Gunasekaran et al., “Big data and predictive analytics for supply chain and organizational performance,” J. Bus. Res., vol. 70, pp. 308–317, 2017, doi: 10.1016/j.jbusres.2016.08.004.

Q. Gui, C. Liu and D. Du, “Globalization of science and international scientific collaboration: A network perspective”, Geoforum, vol. 105, pp. 1-12, 2019, doi: 10.1016/j.geoforum.2019.06.017.

B. Fahimnia, J. Sarkis and H. Davarzani, “Green supply chain management: a review and bibliometric analysis”, Int. J. Prod. Econ., vol. 162, pp. 101-114, 2015, doi: 10.1016/j.ijpe.2015.01.003.

N. Donthu et al., “How to conduct a bibliometric analysis: An overview and guidelines”, J. Bus. Res., vol. 133, pp. 285-296, 2021, doi: 10.1016/j.jbusres.2021.04.070.

T.H. Davenport and J.G. Haris, Competição analítica: vencendo através da nova ciência. Alta Books, 2020.

T.H. Davenport, Analytics 3.0. Harvard business review, vol. 91, no. 12, pp. 64-72, 2013.

G.V. Chueke and M.Amatucci. "O que é bibliometria? Uma introdução ao Fórum." Internext, vol. 10, no.2, pp. 1-5, 2015, doi:10.18568/1980-4865.1021-5.

F. Caviggioli and E. Ughetto, “A bibliometric analysis of the research dealing with the impact of additive manufacturing on industry, business and society,” Int. J. Prod. Econ., vol. 208, pp. 254–268, 2019, doi: 10.1016/j.ijpe.2018.11.022.

J. D. Camm, J. J. Cochran, M. J. Fry, J. W. Ohlmann, D. R. Anderson and D. J. Sweeney, "Business Analytics and Operations Research" in , Cengage, pp. 194, 2019, doi: 10.1109/IS48319.2020.9199954.

M. Aria and C. Cuccurullo, “Biblioshiny, bibliometrix for no coders”, 2019 [Online]. Available:

A.G. Ferreira, "Bibliometria na avaliação de periódicos científicos." DataGramaZero-Revista de Ciência da Informação, vol.11, pp.1-9, 2010.

X.Y. Leung, J. Sun and B. Bai, “Bibliometrics of social media research: A co-citation and co-word analysis”, Int. J. of Hospitality Management, vol. 66, pp. 35-45, 2017, doi: 10.1016/j.ijhm.2017.06.012.

P.S. Deshpande, S.C. Sharma and S.K. Peddoju, “Predictive and prescriptive analytics in Big-data Era”, In: Security and data storage aspect in cloud computing, Springer, Singapore, 2019, pp. 71-81.

H.S. Lamba and S.K. Dubey, “Analysis of requirements for big data adoption to maximize IT business value”, In: 4th International Conference on Reliability, Infocom Technologies and Optimization. IEEE, 2015. pp. 1-6.

M.M. Najafabadi. et al., “Deep learning applications and challenges in big data analytics”, Journal of Big Data, vol. 2, no. 1, 2015, doi: 10.1186/s40537-014-0007-7.

V. Chang, “Towards a Big Data system disaster recovery in a Private Cloud”, Ad Hoc Networks, vol. 35, pp. 65-82, 2015, doi: 10.1016/j.adhoc.2015.07.012.

J.S. Chou, C.F. Tsai, A.D. Pham and Y.H. LU, “Machine learning in concrete strength simulations: Multi-nation data analytics”, Construction and Building Materials, vol. 73, pp. 771-780, 2014, doi: 10.1016/j.conbuildmat.2014.09.054.

M.J. Cobo, A.G.López-Herrera, E. Herrera-Viedma and F. Herrera, “An approach for detecng, quanfying, and visualizing the evoluon of a research field: A praccal applicaon to the fuzzy sets theory field”, Journal of Informetrics, vol. 5, pp.146-166, 2011, doi:10.1016/j.joi.2010.10.002.

T.H. Davenport, “What do we talk about when we talk about analytics?”, Enterprise analytics, op. perf., proc. dec.big data, pp. 9-18, 2013.

A.Z. Faroukhi et al., “Big data monetization throughout Big Data Value Chain: a comprehensive review”, J Big Data, vol. 7, no. 3, 2020, doi: 10.1186/s40537-019-0281-5.

F. Franceschini, G. Maurizio and M. Domenico, Designing performance measurement systems: theory and practice of key performance indicators. Springer, 2018.

J.Z. Zhang et al., “Big Data Analytics and Machine Learning: A Retrospective Overview and Bibliometric Analysis”, Expert Syst. Appl., vol. 184, pp. 115561, 2021, doi: 10.1016/j.eswa.2021.115561.

Q. Wu et al., “Cognitive internet of things: a new paradigm beyond connection,” IEEE Internet Things J., vol. 1, no. 2, pp. 129–143, 2014, doi: 10.1109/JIOT.2014.2311513.

M. Aria and C. Cuccurullo, “Bibliometrix: an R-tool for comprehensive science mapping analysis,” J. Informetr., vol. 11, no. 4, pp. 959–975, 2017, doi: 10.1016/j.joi.2017.08.007.

G.F. Frederico, J.A. Garza-Reyes, A. Kumar and V. Kumar, "Performance measurement for supply chains in the Industry 4.0 era: a balanced scorecard approach", Int. J Prod. Perfor. Manag., vol. 70, no. 4, pp. 789-807, 2021, doi: 10.1108/IJPPM-08-2019-0400.

A. Gaur and M. Kumar, “A systematic approach to conducting review studies: an assessment of content analysis in 25years of IB research”, Journal of World Business, vol. 53 no. 2, pp. 280-289, 2018, doi: 10.1016/j.jwb.2017.11.003.

B. T. Hazen, C. A. Boone, J. D. Ezell, and L. A. Jones-Farmer, “Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications,” Int. J. Prod. Econ., vol. 154, pp. 72–80, 2014, doi: 10.1016/j.ijpe.2014.04.018.

Q. He, “Knowledge discovery through co-word analysis,” Libr. Trends, vol. 48, no. 1, pp. 133–159, 1999.

S. S. Nudurupati, S. Tebboune, and J. Hardman, “Contemporary performance measurement and management (PMM) in digital economies,” Prod. Plan. Control, vol. 27, no. 3, pp. 226–235, 2016, doi: 10.1080/09537287.2015.1092611.

S. S. Nudurupati, P. Garengo and U.S. Bititci, “Impact of the changing business environment on performance measurement and management practices”, Int. J. Prod. Econ., vol. 232, 2021, doi: 10.1016/j.ijpe.2020.107942.

E. Manavalan and K. Jayakrishna, “A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements”, Computers & Industrial Engineering, vol. 127, pp. 925-953, 2019, doi: 10.1016/j.cie.2018.11.030

A. Perianes-Rodriguez, L. Waltman and N.J. Van Eck, “Constructing bibliometric networks: A comparison between full and fractional counting”, Journal of Informetrics, vol. 10, no. 4, pp. 1178-1195, 2016, doi: 10.1016/j.joi.2016.10.006.

A. Kücher and B. Feldbauer-Durstmüller, “Organizational failure and decline–A bibliometric study of the scientific front end”, J. Bus. Res., vol. 98, pp. 503-516, 2019, doi: 10.1016/j.jbusres.2018.05.017.

M.C.C. Grácio, “Acoplamento bibliográfico e análise de cocitação: revisão teórico-conceitual”, Enc. Bibli: rev. elet. bib. cien. da inf., vol. 21, no. 47, pp. 82-99, 2016, doi: 10.5007/1518-2924.2016v21n47p82.

A. McAfee and E. Brynjolfsson, “Big data: the management revolution,” Harvard Business Review, vol. 90, no. 10, p. 4, 2012.

S. F. Wamba, S. Akter, A. Edwards, G. Chopin, and D. Gnanzou, “How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study,” Int. J. Prod. Econ., vol. 165, pp. 234–246, 2015, doi: 10.1016/j.ijpe.2014.12.031.

S. F. Wamba, A. Gunasekaran, S. Akter, S. J. fan Ren, R. Dubey, and S. J. Childe, “Big data analytics and firm performance: effects of dynamic capabilities,” J. Bus. Res., vol. 70, pp. 356–365, 2017, doi: 10.1016/j.jbusres.2016.08.009.

S. Jeble, R. Dubey, S. J. Childe, T. Papadopoulos, D. Roubaud, and A. Prakash, “Impact of big data and predictive analytics capability on supply chain sustainability,” Int. J. Logist. Manag., vol. 29, no. 2, pp. 513–538, 2018, doi: 10.1108/IJLM-05-2017-0134.

S.F. Wamba, M.M. Queiroz and L.Trinchera, “Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation”, Int. J. Prod. Econ., vol. 229, 2020, doi: 10.1016/j.ijpe.2020.107791.

R. S. Kaplan and D. P. Norton, “Using the Balanced Scorecard as a strategic management system,” Harvard Business Review, p. 14, 1996.

G. Gravili, M. Benvenuto, A. Avram, and C. Viola, “The influence of the Digital Divide on Big Data generation within supply chain management,” Int. J. Logist. Manag., vol. 29, no. 2, pp. 592–628, 2018, doi: 10.1108/IJLM-06-2017-0175.

G. Vitale, S. Cupertino and A. Riccaboni, “Big data and management control systems change: the case of an agricultural SME”, J Manag Control, vol. 31, pp. 123–152, 2020, doi: 10.1007/s00187-020-00298-w.

E.M. El-Alfy and S.A. Mohammed, “A review of machine learning for big data analytics: bibliometric approach”, Technology Analysis & Strategic Management, pp. 1-22, 2020, doi:10.1080/09537325.2020.1732912.

K. Börner, C. Chen and K.W. Boyack, “Visualizing knowledge domains”, Annual review of information science and technology, vol. 37, no.1, pp. 179-255, 2003.

H. Dai, H. Wang, G. Xu, J. Wan and M. Imran, “Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies”, Enterprise Inf. Systems, pp.1279-1303, 2020, doi:


U.S. Bititci, A.S. Carrie and L. McDevitt, "Integrated performance measurement systems: a development guide", Int. J. Oper. Prod. Manag., vol. 17 no. 5, pp. 522-534, 1997, doi: 10.1108/01443579710167230

J. Bragge et al., “Unveiling the intellectual structure and evolution of external resource management research: Insights from a bibliometric study”, J. Bus. Res., vol. 97, pp. 141-159, 2019, doi: 10.1016/j.jbusres.2018.12.050.



How to Cite

Assandre, J., & Martins, R. (2023). Analysis of Scientific Production on the Use of Big Data Analytics in Performance Measurement Systems. IEEE Latin America Transactions, 21(3), 367–380. Retrieved from