A k-means-based-approach to analyze the emissions of GHG in the municipalities of MATOPIBA region, Brazil

Authors

  • Lucas Ferreira-Paiva Programa de Pós-Graduação em Ciência da Computação, Departamento de Informática, Universidade Federal de Viçosa, Viçosa, Belo Horizonte https://orcid.org/0000-0003-4924-4666
  • Attawan Guerino Locatel Suela Programa de Pós-Graduação em Economia Aplicada, Departamento de Economia Rural, Universidade Federal de Viçosa, Viçosa, Belo Horizonte https://orcid.org/0000-0003-3475-4495
  • Elizabeth R. Alfaro-Espinoza Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais https://orcid.org/0000-0003-0840-1039
  • Nancy A. Cardona-Casas Pós-Graduação em Solos e Nutrição de Plantas, Departamento de Solos, Universidade Federal de Viçosa, Viçosa, Belo Horizonte https://orcid.org/0000-0002-9637-372X
  • Domingos S. M. Valente Departamento de Engenharia Agrícola, Universidade Federal de Viçosa: Vicosa, MG, BR https://orcid.org/0000-0001-7248-8613
  • Rodolpho V. A. Neves Departamento de Engenharia Elétrica, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil https://orcid.org/0000-0002-0101-483X

Keywords:

biodiversity, carbon offset pricing, climate change impact, k-means, sustainability risk assessment, spatial autocorrelation, alergies

Abstract

Brazil is the sixth largest emitter of GHG, with land use change and agriculture being the main source of these emissions. The recent expansion of agriculture in Brazil has been occurring mainly in the MATOPIBA region, a territorial division inserted on Cerrado. Clustering methods are useful for driving hyper-local GHG emission reduction strategies, but they have yet to be applied at the municipal level, nor from the emissions of various economic sectors. In order to contribute to the identification of the most critical areas in relation to GHG emissions for MATOPIBA, this study proposes an approach of municipal clustering according to the percentage contribution of Agriculture, Land Use Change, Energy and Waste sectors in total emissions. The clustering was performed with the k-means algorithm, using the elbow method and the silhouette score to define the number of clusters. In addition, statistical and geostatistical analyses were conducted to assess the consistency and spatial autocorrelation of the groups formed. The approach was able to generate six clusters with distinct characteristics, showing the heterogeneous profile of GHG emissions from MATOPIBA. At the same time, the clustering of similar municipalities can help in making decisions about the best pro-environmental measures to reduce/remove GHG to contain global warming.

Downloads

Download data is not yet available.

Author Biographies

Lucas Ferreira-Paiva, Programa de Pós-Graduação em Ciência da Computação, Departamento de Informática, Universidade Federal de Viçosa, Viçosa, Belo Horizonte

graduated in 2020 with a Bachelor's degree in Electrical Engineering from the Universidade Federal de Viçosa (UFV) in Viçosa, Brazil. He is now pursuing a MSc in Computer Science at UFV and a Specialization in Data Science for Aeronautical Industry at Universidade Federal de Pernambuco in Recife, Brazil. His research interests are Computational Intelligence and Signal Processing.

Attawan Guerino Locatel Suela, Programa de Pós-Graduação em Economia Aplicada, Departamento de Economia Rural, Universidade Federal de Viçosa, Viçosa, Belo Horizonte

received a Bachelor's degree in Agribusiness from the Universidade Federal de Viçosa (UFV) in 2017, and a Master's degree in Applied Economics from UFV in 2019. He is currently a PhD candidate in Applied Economics at UFV. His research interests include research in agribusiness, environment, economics and modeling methods for data analysis.

Elizabeth R. Alfaro-Espinoza, Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais

graduated from the Universidad Nacional de Trujillo in Trujillo, Peru, with a degree in Microbiology and Parasitology. She is a PhD student in Bioinformatics at the Federal University of Minas Gerais in Belo Horizonte, Brazil. His research interests include structural bioinformatics and software development for managing biological data.

Nancy A. Cardona-Casas, Pós-Graduação em Solos e Nutrição de Plantas, Departamento de Solos, Universidade Federal de Viçosa, Viçosa, Belo Horizonte

earned a Bachelor's degree in Agronomic Engineering from the Universidad Nacional de Colombia in Medellín, Colombia, and a Master's degree in Soils and Plant Nutrition from the Universidade Federal de Viçosa in Brazil, where she is currently completing her PhD. She has an experience in agronomy, with a focus on entomology and agroecology, and has worked mostly in family farming, soil management, conservation, and fruit producing.

Domingos S. M. Valente, Departamento de Engenharia Agrícola, Universidade Federal de Viçosa: Vicosa, MG, BR

Domingos S. M. Valente received a Dsc. in Agricultural Engineering at Universidade Federal de Viçosa, Brazil, in 2010, and a Sabbatical (post-doc) at the University of Illinois (Urbana-Champaign). Currently, he is an Associate Professor at UFV, in the Department of Agricultural Engineering, working in the areas of Agricultural Mechanization, Digital Farming, Machine Learning, Remote Sensing, and GIS.

Rodolpho V. A. Neves, Departamento de Engenharia Elétrica, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil

received a Bachelor's degree in Electrical Engineering from the Universidade Federal de Viçosa (UFV), Viçosa, Brazil, in 2011, and the M.Sc. and D.Sc. in Electrical Engineering from the University of São Paulo, São Carlos, Brazil, in 2013 and 2018, respectively. From 2015 to 2016, he was a Visiting Researcher at Aalborg University, Denmark. He is currently an Adjunct Professor in the Department of Electrical Engineering at UFV. His research interests include intelligent control of dynamic systems and management of micro power grids.

References

G. Sparovek, V. Guidotti, L. F. G. Pinto, G. Berndes, A. Barretto, and F. Cerignoni, “Asymmetries of cattle and crop productivity and efficiency during Brazil’s agricultural expansion from 1975 to 2006,” Elementa: Science of the Anthropocene, vol. 6, 1 2018.

Y. l. P. d. Waroux, R. D. Garrett, J. Graesser, C. Nolte, C. White, and E. F. Lambin, “The restructuring of south american soy and beef production and trade under changing environmental regulations,” World Development, vol. 121, pp. 188–202, 9 2019.

S. P. Polizel, R. M. d. S. P. Vieira, J. Pompeu, Y. d. C. Ferreira, E. R. d. Sousa-Neto, A. A. Barbosa, and J. P. H. B. Ometto, “Analysing the dynamics of land use in the context of current conservation policies and land tenure in the cerrado – MATOPIBA region (Brazil),” Land Use Policy, vol. 109, p. 105713, 10 2021.

R. F. Potenza, G. d. O. Quintana, A. M. Cardoso, D. S. Tsai, M. d. S. Cremer, F. B. e. Silva, K. Carvalho, I. Coluna, J. Shimbo, C. Silva, E. Souza, B. Zimbres, A. Alencar, C. Angelo, and T. Azevedo, “Análise das emissões brasileiras de e suas implicações para as metas climáticas do brasil 1970 – 2020,” tech. rep., Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa (SEEG), 2021.

P. e. A. Ministério da Agricultura, Plano setorial para adaptação à mudança do clima e baixa emissão de carbono na agropecuária com vistas ao desenvolvimento sustentável (2020-2030): visão estratégica para um novo ciclo. 2021.

F. L. M. Freitas, Brazilian public protection regulations and the preservation of ecosystem services and biodiversity. PhD thesis, 2019.

R. Loyola, C. Rezende, and B. Ribeiro, “Áreas prioritárias para conservação e restauração no MATOPIBA,” tech. rep., Conservação Internacional Brasil, 2021.

G. R. Lopes, M. G. B. Lima, and T. N. P. d. Reis, “Maldevelopment revisited: Inclusiveness and social impacts of soy expansion over Brazil’s cerrado in MATOPIBA,” World Development, vol. 139, p. 105316, 3 2021.

B. Rudorff and J. Risso, “Análise geoespacial da dinâmica das culturas anuais no bioma cerrado: 2000 a 2014,” tech. rep., Agrosatélite Geotecnologia Aplicada, 2015.

J. Bonanomi, F. R. Tortato, R. d. S. R. Gomes, J. M. Penha, A. S. Bueno, and C. A. Peres, “Protecting forests at the expense of native grasslands: Land-use policy encourages open-habitat loss in the Brazilian cerrado biome,” Perspectives in Ecology and Conservation, vol. 17, pp. 26–31, 1 2019.

D. Ezzine-de-Blas, E. Corbera, and R. Lapeyre, “Payments for environmental services and motivation crowding: Towards a conceptual framework,” Ecological Economics, vol. 156, pp. 434–443, 2 2019.

K. Costa, J. Brandão, A. Carneiro, J. Monti, and H. v. d. Vliet, “Potencial regional de expansão da soja no MATOPIBA,” tech. rep., Solidaridad Brasil, 2021.

E. d. Miranda, “MATOPIBA, delimitação, caracterização, desafios e oportunidades para o desenvolvimento,” tech. rep., Empresa Brasileira de Pesquisa Agropecuária, 2015.

C. N. de Abastecimento, Acompanhamento da safra brasileira de grãos. 2020.

B. Rudorff and J. Risso, “Análise geoespacial da soja no bioma cerrado: Dinâmica da expansão. aptidão agrícola da soja. sistema de avaliação para compensação financeira: 2001 a 2019,” tech. rep., Agrosatélite Geotecnologia Aplicada, 2020.

Intergovernmental Panel on Climate Change, “Climate change 2021: Impacts, adaptation and vulnerability. summary for policymakers,” 2022.

C. Angelo and C. Rittl, “Análise das emissões brasileiras de gases de efeito estufa e suas implicações para as metas climáticas do brasil 1970 – 2018,” tech. rep., Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa (SEEG), 2019.

G. B. Lyra, J. F. Oliveira-Júnior, and M. Zeri, “Cluster analysis applied to the spatial and temporal variability of monthly rainfall in alagoas state, northeast of brazil,” vol. 34, pp. 3546–3558, 2 2014.

P. E. Teodoro, J. F. de Oliveira-Júnior, E. R. da Cunha, C. C. G. Correa, F. E. Torres, V. M. Bacani, G. Gois, and L. P. Ribeiro, “Cluster analysis applied to the spatial and temporal variability of monthly rainfall in mato grosso do sul state, brazil,” vol. 128, pp. 197–209, 10 2015.

R. H. Caúla, J. F. Oliveira-Júnior, G. B. Lyra, R. C. Delgado, and P. F. L. H. Filho, “Overview of fire foci causes and locations in brazil based on meteorological satellite data from 1998 to 2011,” vol. 74, pp. 1497– 1508, 2 2015.

C. A. da Silva Junior, P. E. Teodoro, R. C. Delgado, L. P. R. Teodoro, M. Lima, A. de Andréa Pantaleão, F. H. R. Baio, G. B. de Azevedo, G. T. de Oliveira Sousa Azevedo, G. F. Capristo-Silva, D. Arvor, and C. U. Facco, “Persistent fire foci in all biomes undermine the paris agreement in brazil,” vol. 10, 10 2020.

T. R. De Azevedo, C. Costa Junior, A. Brandão Junior, M. d. S. Cremer, M. Piatto, D. S. Tsai, P. Barreto, H. Martins, M. Sales, T. Galuchi, et al., “Seeg initiative estimates of brazilian greenhouse gas emissions from 1970 to 2015,” Scientific data, vol. 5, no. 1, pp. 1–43, 2018.

A. Suela, M. S. Nazareth, and D. A. d. Cunha, “Efeitos ambientais da implementação do plano ABC no MATOPIBA: uma abordagem por insumo-produto,” Revista Brasileira de Estudos Regionais e Urbanos, vol. 14, pp. 629–656, 10 2020.

A. G. L. Suela, E. A. d. Santos, G. L. Suela, and I. M. Trotter, “Um modelo de resposta a choques no crescimento das emissões de gases de efeito estufa,” in Anais do 59º Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural (SOBER) e 6º Encontro Brasileiro de Pesquisadores em Cooperativismo (EBPC), 2021.

B. B. N. Strassburg, T. Brooks, R. Feltran-Barbieri, A. Iribarrem,

R. Crouzeilles, R. Loyola, A. E. Latawiec, F. J. B. O. Filho, C. A. d. M. Scaramuzza, F. R. Scarano, B. Soares-Filho, and A. Balmford, “Moment of truth for the cerrado hotspot,” Nature Ecology Evolution, vol. 1, 3 2017.

Instituto de Energia e Meio Ambiente, “Municípios da amazônia dominam emissões de carbono,” 2021.

M. G. de Morais and J. A. V. Costa, “Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide,” Energy Conversion and Management, vol. 48, no. 7, pp. 2169–2173, 2007.

E. M. Valdovinos-García, J. Barajas-Fernández, M. d. l. Olán-Acosta, M. A. Petriz-Prieto, A. Guzmán-López, and M. G. Bravo-Sánchez, “Techno-economic study of co2 capture of a thermoelectric plant using microalgae (chlorella vulgaris) for production of feedstock for bioenergy,” Energies, vol. 13, no. 2, 2020.

M. Bustamante, C. Robledo-Abad, R. Harper, C. Mbow, N. H. Ravindranat, F. Sperling, H. Haberl, A. de Siqueira Pinto, and P. Smith, “Cobenefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (afolu) sector,” Global Change Biology, vol. 20, no. 10, pp. 3270–3290, 2014.

Published

2022-08-22

How to Cite

Ferreira-Paiva, L., Locatel Suela, A. G., Alfaro-Espinoza, E. R., Cardona-Casas, N. A., M. Valente, D. S., & V. A. Neves, R. (2022). A k-means-based-approach to analyze the emissions of GHG in the municipalities of MATOPIBA region, Brazil. IEEE Latin America Transactions, 20(11), 2339–2345. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/6738

Most read articles by the same author(s)