Renewable Hybrid Systems for water pumping: a review



Hybrid Systems, Pumping Water, Renewable Energy


Several studies and applications of renewable systems for water pumping are developed in the literature, but these are mostly plants operating with a single source, usually photovoltaic (PV). In this article we present a systematic literature review on hybrid renewable systems applied to water pumping, verifying the applicability and the different sources, serving as a reference for future research. PV is the dominant generation with a presence in 86% of the articles; wind appears in 81% and hydro power plants in 53% of the papers.


Download data is not yet available.

Author Biographies

Igor Souza Cruz, Universidade Federal do Ceará, Fortaleza - CE, 60355-636, Brasil

Igor Souza Cruz has degrees in Renewable Energies Engineering in UFC (2019). Attending Masters Degree in Mechanical Engineering with emphasis on Wind Energy at UFC. His subjects of interest are: hybrid power systems , renewable energies and electromechanical projects.

Natasha Esteves Batista, Universidade Federal do Ceará e Universidad de Cádiz - España

Natasha Esteves Batista is a Master degree in applied physics, graduated in Physics in the UECE and a PhD student in electrical engineering in UFC and UCA under cotutelle. Subjects: hydrogen technology, renewable energy, storage energy systems, hybrid renewable energy systems.

Prof. Paulo Carvalho, Universidade Federal do Ceará, Fortaleza - CE, 60355-636, Brasil

Paulo Cesar Marques de Carvalho has a degree in Electrical Engineer, UFC (1989), Master in Electrical Engineer, UFPB (1992) and PhD in Electrical Engineer, University of Paderborn, Germany (1997). Professor at the Department of Electrical Engineer, UFC. Coordinates the UFC's Alternative Energies Laboratoy. CNPq Research Productivity Scholarship.


United Nations / UNESCO, “Water And Energy: Information Brief,” Unesco, vol. 1, pp. 1–230, 2014, [Online]. Available:

I. Staffell and S. Pfenninger, “The increasing impact of weather on electricity supply and demand,” Energy, vol. 145, pp. 65–78, Feb. 2018, doi: 10.1016/

B. Ramkiran, “Solar powered Reverse Osmosis - A solution for Energy and Water Crisis,” Aug. 2015, doi: 10.1109/ICIIECS.2015.7193218.

C. Xiang, J. Liu, Y. Yu, W. Shao, C. Mei, and L. Xia, “Feasibility assessment of renewable energies for cassava irrigation in China,” Energy Procedia, vol. 142, pp. 17–22, Dec. 2017, doi: 10.1016/j.egypro.2017.12.004.

P. Abhilash, R. N. Kumar, and R. P. Kumar, “Solar powered water pump with single axis tracking system for irrigation purpose,” in Materials Today: Proceedings, 2020, vol. 39, pp. 553–557, doi: 10.1016/j.matpr.2020.08.336.

P. C. M. M. Carvalho, L. A. D. D. Carvalho, J. J. H. Filho, and R. S. H. H. Oliveira, “Feasibility study of photovoltaic powered reverse osmosis and pumping plant configurations,” IET Renew. Power Gener., vol. 7, no. 2, pp. 134–143, 2013, doi: 10.1049/iet-rpg.2012.0228.

K. M. Kotb et al., “A fuzzy decision-making model for optimal design of solar, wind, diesel-based RO desalination integrating flow-battery and pumped-hydro storage: Case study in Baltim, Egypt,” Energy Convers. Manag., vol. 235, p. 113962, May 2021, doi: 10.1016/J.ENCONMAN.2021.113962.

P. C. M. De Carvalho et al., “The Brazilian experience with a photovoltaic powered reverse osmosis plant,” Prog. Photovoltaics Res. Appl., vol. 12, no. 5, pp. 373–385, 2004, doi: 10.1002/pip.543.

E. J. Okampo and N. Nwulu, “Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review,” Renew. Sustain. Energy Rev., vol. 140, no. January, p. 110712, 2021, doi: 10.1016/j.rser.2021.110712.

M. S. Javed, D. Zhong, T. Ma, A. Song, and S. Ahmed, “Hybrid pumped hydro and battery storage for renewable energy based power supply system,” Appl. Energy, vol. 257, p. 114026, Jan. 2020, doi: 10.1016/j.apenergy.2019.114026.

J. D. Hunt, M. A. V. Freitas, and A. O. Pereira Junior, “Enhanced-Pumped-Storage: Combining pumped-storage in a yearly storage cycle with dams in cascade in Brazil,” Energy, vol. 78, pp. 513–523, 2014, doi: 10.1016/

F. A. Canales, A. Beluco, and C. A. B. Mendes, “Usinas hidrelétricas reversíveis no Brasil e no mundo: aplicação e perspectivas,” Rev. Eletrônica em Gestão, Educ. e Tecnol. Ambient. - Rev. do Cent. Ciências Nat. e Exatas – UFSM, vol. 19, no. 2, pp. 1230–1249, 2015, doi: 10.5902/2236117016002.

K. P. Kumar and B. Saravanan, “Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids – A review,” Renew. Sustain. Energy Rev., vol. 71, no. December 2016, pp. 348–358, 2017, doi: 10.1016/j.rser.2016.12.063.

D. Araujo et al., “Renewable Hybrid Systems: Characterization and Tendencies,” IEEE Lat. Am. Trans., vol. 18, no. 1, pp. 102–112, 2020, doi: 10.1109/TLA.2020.9049467.

M. A. M. Khan, S. Rehman, and F. A. Al-Sulaiman, “A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review,” Renew. Sustain. Energy Rev., vol. 97, no. August, pp. 456–477, 2018, doi: 10.1016/j.rser.2018.08.049.

S. Rehman, L. M. Al-Hadhrami, and M. M. Alam, “Pumped hydro energy storage system: A technological review,” Renewable and Sustainable Energy Reviews, vol. 44. Elsevier Ltd, pp. 586–598, Apr. 01, 2015, doi: 10.1016/j.rser.2014.12.040.

A. Khiareddine, C. Ben Salah, D. Rekioua, and M. F. Mimouni, Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system, vol. 153. Elsevier Ltd, 2018, pp. 743–762.

D. M. Campos, D. L. Ferreira, G. H. Gonçalves, A. C. S. Farche, J. C. de Oliveira, and J. H. Ansai, “Effects of aquatic physical exercise on neuropsychological factors in older people: A systematic review,” Archives of Gerontology and Geriatrics, vol. 96. p. 104435, 2021, doi: 10.1016/j.archger.2021.104435.

M. R. Oliveira et al., “Covid-19 and the impact on the physical activity level of elderly people: A systematic review,” Exp. Gerontol., vol. 159, p. 111675, 2021, doi: 10.1016/j.exger.2021.111675.

C. Bustos Navarrete, M. G. Morales Malverde, P. Salcedo Lagos, and A. Díaz Mujica, “Buhos: A web-based systematic literature review management software,” SoftwareX, vol. 7, pp. 360–372, Jan. 2018, doi: 10.1016/j.softx.2018.10.004.

S. Fabbri, C. Silva, E. Hernandes, F. Octaviano, A. Di Thommazo, and A. Belgamo, “Improvements in the StArt tool to better support the systematic review process,” ACM Int. Conf. Proceeding Ser., vol. 01-03-June, 2016, doi: 10.1145/2915970.2916013.

C. Feng, Y. Zheng, C. Li, Z. Mai, W. Wu, and H. Chen, “Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system,” Renew. Energy, vol. 176, pp. 1–10, 2021, doi: 10.1016/j.renene.2021.05.082.

K. M. Tan, T. S. Babu, V. K. Ramachandaramurthy, P. Kasinathan, S. G. Solanki, and S. K. Raveendran, “Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration,” Journal of Energy Storage, vol. 39. p. 102591, 2021, doi: 10.1016/j.est.2021.102591.

B. K. Das, M. Hasan, and F. Rashid, “Optimal sizing of a grid-independent PV/diesel/pump-hydro hybrid system: A case study in Bangladesh,” Sustain. Energy Technol. Assessments, vol. 44, p. 100997, Apr. 2021, doi: 10.1016/j.seta.2021.100997.

S. Fabbri et al., “Managing Literature reviews information through visualization,” ICEIS 2012 - Proc. 14th Int. Conf. Enterp. Inf. Syst., vol. 2 ISAS, no. SAIC/-, pp. 36–45, 2012, doi: 10.5220/0004004000360045.

S. Fabbri, C. Silva, E. Hernandes, F. Octaviano, A. Di Thommazo, and A. Belgamo, “Improvements in the StArt tool to better support the systematic review process,” in ACM International Conference Proceeding Series, 2016, vol. 01-03-June, doi: 10.1145/2915970.2916013.

J. Lian, Y. Zhang, C. Ma, Y. Yang, and E. Chaima, “A review on recent sizing methodologies of hybrid renewable energy systems,” Energy Convers. Manag., vol. 199, no. September, p. 112027, Nov. 2019, doi: 10.1016/j.enconman.2019.112027.

M. Shahzad Javed, T. Ma, J. Jurasz, and M. Yasir Amin, “Solar and wind power generation systems with pumped hydro storage: Review and future perspectives,” 2019, doi: 10.1016/j.renene.2019.11.157.

D. Delimustafic, J. Islambegovic, A. Aksamovic, and S. Masic, “Model of a hybrid renewable energy system: Control, supervision and energy distribution,” in Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 1081–1086, doi: 10.1109/ISIE.2011.5984310.

J. Margeta and Z. Glasnovic, “Theoretical settings of photovoltaic-hydro energy system for sustainable energy production,” Sol. Energy, vol. 86, no. 3, pp. 972–982, Mar. 2012, doi: 10.1016/j.solener.2012.01.007.

F. A. Canales, A. Beluco, and C. A. B. Mendes, “A comparative study of a wind hydro hybrid system with water storage capacity: Conventional reservoir or pumped storage plant?,” J. Energy Storage, vol. 4, pp. 96–105, Dec. 2015, doi: 10.1016/j.est.2015.09.007.

M. Zare Oskouei and A. Sadeghi Yazdankhah, “Scenario-based stochastic optimal operation of wind, photovoltaic, pump-storage hybrid system in frequency- based pricing,” Energy Convers. Manag., vol. 105, pp. 1105–1114, Nov. 2015, doi: 10.1016/j.enconman.2015.08.062.

K. Kusakana, “Optimal scheduling for distributed hybrid system with pumped hydro storage,” Energy Convers. Manag., vol. 111, pp. 253–260, Mar. 2016, doi: 10.1016/j.enconman.2015.12.081.

A. S. Kocaman and V. Modi, “Value of pumped hydro storage in a hybrid energy generation and allocation system,” Appl. Energy, vol. 205, pp. 1202–1215, Nov. 2017, doi: 10.1016/j.apenergy.2017.08.129.

G. Notton, D. Mistrushi, L. Stoyanov, and P. Berberi, “Operation of a photovoltaic-wind plant with a hydro pumping-storage for electricity peak-shaving in an island context,” Sol. Energy, vol. 157, pp. 20–34, Nov. 2017, doi: 10.1016/j.solener.2017.08.016.

H. M. Sultan, A. A. Z. Diab, O. N. Kuznetsov, and I. S. Zubkova, “Design and evaluation of PV-wind hybrid system with hydroelectric pumped storage on the National Power System of Egypt,” Glob. Energy Interconnect. Full-length Artic., vol. 1, no. 3, 2018, doi: 10.14171/j.2096-5117.gei.2018.03.001.

J. Jurasz et al., “Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland),” Energy, vol. 161, pp. 183–192, Oct. 2018, doi: 10.1016/

J. Jurasz, J. Mikulik, M. Krzywda, B. Ciapała, and M. Janowski, “Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation,” Energy, vol. 144, pp. 549–563, Feb. 2018, doi: 10.1016/

D. M. Gioutsos, K. Blok, L. van Velzen, and S. Moorman, “Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe,” Appl. Energy, vol. 226, pp. 437–449, Sep. 2018, doi: 10.1016/j.apenergy.2018.05.108.

“Simulink” “Documentation,” “Simulink - Simulation and Model-Based Design - MATLAB & Simulink,” Simulation and Model-Based Design, MathWorks., 2022. (accessed Jan. 13, 2022).

B. Xu et al., “Modeling a pumped storage hydropower integrated to a hybrid power system with solar-wind power and its stability analysis,” Appl. Energy, vol. 248, pp. 446–462, Aug. 2019, doi: 10.1016/j.apenergy.2019.04.125.

B. Shyam, B. H. Krishna, and P. Kanakasabapathy, “Optimal scheduling of hybrid pumped hydro storage system using linear programming,” Int. J. Recent Technol. Eng., vol. 8, no. 2 Special Issue 8, pp. 1575–1580, 2019, doi: 10.35940/ijrte.B1107.0882S819.

K. Sun, K. J. Li, J. Pan, Y. Liu, and Y. Liu, “An optimal combined operation scheme for pumped storage and hybrid wind-photovoltaic complementary power generation system,” Appl. Energy, vol. 242, pp. 1155–1163, May 2019, doi: 10.1016/j.apenergy.2019.03.171.

Y. Wu et al., “Optimal location selection for offshore wind-PV-seawater pumped storage power plant using a hybrid MCDM approach: A two-stage framework,” Energy Convers. Manag., vol. 199, no. September, p. 112066, 2019, doi: 10.1016/j.enconman.2019.112066.

J. I. Sarasúa, G. Martínez-Lucas, and M. Lafoz, “Analysis of alternative frequency control schemes for increasing renewable energy penetration in El Hierro Island power system,” Int. J. Electr. Power Energy Syst., vol. 113, pp. 807–823, Dec. 2019, doi: 10.1016/j.ijepes.2019.06.008.

M. Al-Addous, S. Al Hmidan, M. Jaradat, E. Alasis, and N. Barbana, “Potential and feasibility study of hybrid wind-hydroelectric power system with water-pumping storage: Jordan as a case study,” Appl. Sci., vol. 10, no. 9, May 2020, doi: 10.3390/app10093332.

L. Al-Ghussain, R. Samu, O. Taylan, and M. Fahrioglu, “Sizing renewable energy systems with energy storage systems in microgrids for maximum cost-efficient utilization of renewable energy resources,” Sustain. Cities Soc., vol. 55, p. 102059, Apr. 2020, doi: 10.1016/j.scs.2020.102059.

A. M. Abdelshafy, J. Jurasz, H. Hassan, and A. M. Mohamed, “Optimized energy management strategy for grid connected double storage (pumped storage-battery) system powered by renewable energy resources,” Energy, vol. 192, p. 116615, Feb. 2020, doi: 10.1016/

R. Gupta, M. C. Soini, M. K. Patel, and D. Parra, “Levelized cost of solar photovoltaics and wind supported by storage technologies to supply firm electricity,” J. Energy Storage, vol. 27, p. 101027, Feb. 2020, doi: 10.1016/j.est.2019.101027.

Y. F. Nassar et al., “Dynamic analysis and sizing optimization of a pumped hydroelectric storage-integrated hybrid PV/Wind system: A case study,” Energy Convers. Manag., vol. 229, p. 113744, Feb. 2021, doi: 10.1016/j.enconman.2020.113744.

C. Serrano-Canalejo, R. Sarrias-Mena, P. Garcia-Trivino, and L. M. Fernandez-Ramirez, “Energy management system design and economic feasibility evaluation for a hybrid wind power/pumped hydroelectric power plant,” IEEE Lat. Am. Trans., vol. 17, no. 10, pp. 1686–1693, 2019, doi: 10.1109/TLA.2019.8986447.

S. Skroufouta and E. Baltas, “Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea,” Renew. Energy, vol. 173, pp. 141–150, 2021, doi: 10.1016/j.renene.2021.03.113.

A. H. Eisapour, K. Jafarpur, and E. Farjah, “Feasibility study of a smart hybrid renewable energy system to supply the electricity and heat demand of Eram Campus, Shiraz University; simulation, optimization, and sensitivity analysis,” Energy Convers. Manag., vol. 248, p. 114779, 2021, doi: 10.1016/j.enconman.2021.114779.

X. Liu, N. Li, H. Mu, M. Li, and X. Liu, “Techno-energy-economic assessment of a high capacity offshore wind-pumped-storage hybrid power system for regional power system,” J. Energy Storage, vol. 41, no. April, p. 102892, 2021, doi: 10.1016/j.est.2021.102892.

T. Ma, H. Yang, L. Lu, and J. Peng, “Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong,” Renew. Energy, vol. 69, pp. 7–15, Sep. 2014, doi: 10.1016/j.renene.2014.03.028.

T. Ma, H. Yang, L. Lu, and J. Peng, “Optimal design of an autonomous solar–wind-pumped storage power supply system,” Appl. Energy, vol. 160, pp. 728–736, Dec. 2015, doi: 10.1016/J.APENERGY.2014.11.026.

F. Petrakopoulou, A. Robinson, and M. Loizidou, “Simulation and analysis of a stand-alone solar-wind and pumped-storage hydropower plant,” Energy, vol. 96, pp. 676–683, Feb. 2016, doi: 10.1016/

M. Das, M. A. K. Singh, and A. Biswas, “Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches – Case of a radio transmitter station in India,” Energy Convers. Manag., vol. 185, pp. 339–352, Apr. 2019, doi: 10.1016/j.enconman.2019.01.107.

M. Guezgouz et al., “Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems,” Energy Convers. Manag., vol. 199, p. 112046, Nov. 2019, doi: 10.1016/j.enconman.2019.112046.

R. R. Lingamuthu and R. Mariappan, “Power flow control of grid connected hybrid renewable energy system using hybrid controller with pumped storage,” Int. J. Hydrogen Energy, vol. 44, no. 7, pp. 3790–3802, Feb. 2019, doi: 10.1016/j.ijhydene.2018.12.092.

R. Hemmati, “Stochastic energy investment in off-grid renewable energy hub for autonomous building,” IET Renew. Power Gener., vol. 13, no. 12, pp. 2232–2239, Sep. 2019, doi: 10.1049/iet-rpg.2018.6254.

D. Al Katsaprakakis, I. Dakanali, C. Condaxakis, and D. G. Christakis, “Comparing electricity storage technologies for small insular grids,” Appl. Energy, vol. 251, no. May, p. 113332, 2019, doi: 10.1016/j.apenergy.2019.113332.

M. Shabani, E. Dahlquist, F. Wallin, and J. Yan, “Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden,” Appl. Energy, vol. 279, p. 115830, Dec. 2020, doi: 10.1016/j.apenergy.2020.115830.

X. Xu, W. Hu, D. Cao, Q. Huang, C. Chen, and Z. Chen, “Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system,” Renew. Energy, vol. 147, pp. 1418–1431, Mar. 2020, doi: 10.1016/j.renene.2019.09.099.

M. Shahzad Javed, T. Ma, J. Jurasz, S. Ahmed, and J. Mikulik, “Performance comparison of heuristic algorithms for optimization of hybrid off-grid renewable energy systems,” 2020, doi: 10.1016/

E. N. Nyeche and E. O. Diemuodeke, “Modelling and optimisation of a hybrid PV-wind turbine-pumped hydro storage energy system for mini-grid application in coastline communities,” J. Clean. Prod., vol. 250, p. 119578, Mar. , doi: 10.1016/j.jclepro.2019.119578.

M. S. Javed et al., “Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island,” Renew. Energy, vol. 164, pp. 1376–1394, Feb. 2021, doi: 10.1016/j.renene.2020.10.063.

M. S. Islam, B. K. Das, P. Das, and M. H. Rahaman, “Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada,” Energy, vol. 220, p. 119709, Apr. 2021, doi: 10.1016/

B. Liu, Z. Wang, L. Feng, and K. Jermsittiparsert, “Optimal operation of photovoltaic/diesel generator/pumped water reservoir power system using modified manta ray optimization,” J. Clean. Prod., vol. 289, p. 125733, Mar. 2021, doi: 10.1016/j.jclepro.2020.125733.

A. K. S. Maisanam, A. Biswas, and K. K. Sharma, “Integrated socio-environmental and techno-economic factors for designing and sizing of a sustainable hybrid renewable energy system,” Energy Convers. Manag., vol. 247, p. 114709, 2021, doi: 10.1016/j.enconman.2021.114709.

X. Guo and M. Sepanta, “Evaluation of a new combined energy system performance to produce electricity and hydrogen with energy storage option,” Energy Reports, vol. 7, pp. 1697–1711, 2021, doi:

S. Makhdoomi and A. Askarzadeh, “Impact of solar tracker and energy storage system on sizing of hybrid energy systems: A comparison between diesel/PV/PHS and diesel/PV/FC,” Energy, vol. 231, p. 120920, 2021, doi: 10.1016/

L. Al-Ghussain, A. Darwish Ahmad, A. M. Abubaker, and M. A. Mohamed, “An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses,” Sustain. Energy Technol. Assessments, vol. 46, no. December 2020, p. 101273, 2021, doi: 10.1016/j.seta.2021.101273.

J. Liu, L. Jian, W. Wang, Z. Qiu, J. Zhang, and P. Dastbaz, “The role of energy storage systems in resilience enhancement of health care centers with critical loads,” J. Energy Storage, vol. 33, Jan. 2021, doi: 10.1016/j.est.2020.102086.

C. Gopal, M. Mohanraj, P. Chandramohan, and P. Chandrasekar, “Renewable energy source water pumping systems - A literature review,” Renewable and Sustainable Energy Reviews, vol. 25. Pergamon, pp. 351–370, Sep. 01, 2013, doi: 10.1016/j.rser.2013.04.012.

D. Botero, M. Navarro, M. Sanz, and J. F. Sanz Osorio, “Computer science tool for the calculation of technical-economical viability for the integration of renewable energies in pumping stations (HIIER & CIBER),” Renew. Energy Power Qual. J., vol. 1, no. 1, pp. 453–460, 2003, doi: 10.24084/repqj01.400.

J. L. Bernal-Agustín, R. Dufo-López, J. A. Domínguez-Navarro, and J. M. Yusta-Loyo, “Optimal design of a PV-wind system for water pumping,” Renew. Energy Power Qual. J., vol. 1, no. 6, pp. 788–793, Mar. 2008, doi: 10.24084/repqj06.450.

B. D. Vick and B. A. Neal, “Analysis of off-grid hybrid wind turbine/solar PV water pumping systems,” Sol. Energy, vol. 86, no. 5, pp. 1197–1207, May 2012, doi: 10.1016/j.solener.2012.01.012.

X. Roboam, B. Sareni, D. T. Nguyen, and J. Belhadj, “Optimal system management of a water pumping and desalination process supplied with intermittent renewable sources,” in IFAC Proceedings Volumes (IFAC-PapersOnline), Jan. 2012, vol. 8, no. PART 1, pp. 369–374, doi: 10.3182/20120902-4-fr-2032.00066.

G. Bekele and G. Boneya, “Energy Procedia Energy Procedia 00 (2011) 000-000 Design of a Photovoltaic-Wind Hybrid Power Generation System for Ethiopian Remote Area,” Energy Procedia, vol. 14, pp. 1760–1765, 2012, doi: 10.1016/j.egypro.2011.12.1164.

H. Cherif, G. Champenois, and J. Belhadj, “Environmental life cycle analysis of a water pumping and desalination process powered by intermittent renewable energy sources,” Renewable and Sustainable Energy Reviews, vol. 59. Elsevier Ltd, pp. 1504–1513, Jun. 01, 2016, doi: 10.1016/j.rser.2016.01.094.

J. W. Powell, J. M. Welsh, and R. Farquharson, “Investment analysis of solar energy in a hybrid diesel irrigation pumping system in New South Wales, Australia,” J. Clean. Prod., vol. 224, pp. 444–454, Jul. 2019, doi: 10.1016/j.jclepro.2019.03.071.

D. Testi, L. Urbanucci, C. Giola, E. Schito, and P. Conti, “Stochastic optimal integration of decentralized heat pumps in a smart thermal and electric micro-grid,” Energy Convers. Manag., vol. 210, p. 112734, Apr. 2020, doi: 10.1016/j.enconman.2020.112734.

F. Calise, F. L. Cappiello, M. Dentice D’accadia, and M. Vicidomini, “Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels,” 2020, doi: 10.1016/j.renene.2020.06.075.

and G. D. L. da Silva, A. Beluco, “A wind PV diesel hybrid system for energizing a sewage station in Santa Rosa, in southern Brazil,” IEEE Lat. Am. Trans., vol. 18, no. 4, pp. 773–780, 2020, Accessed: Aug. 01, 2021. [Online]. Available:

A. Merida García, J. Gallagher, M. Crespo Chacón, and A. Mc Nabola, “The environmental and economic benefits of a hybrid hydropower energy recovery and solar energy system (PAT-PV), under varying energy demands in the agricultural sector,” J. Clean. Prod., vol. 303, 2021, doi: 10.1016/j.jclepro.2021.127078.

J. Carroquino, R. Dufo-López, and J. L. Bernal-Agustín, “Sizing stand-alone hybrid generation for seasonal irrigation pumping,” Renew. Energy Power Qual. J., vol. 1, no. 9, pp. 389–401, 2011, doi: 10.24084/repqj09.346.

G. Bekele and G. Tadesse, “Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia,” Appl. Energy, vol. 97, pp. 5–15, 2012, doi: 10.1016/j.apenergy.2011.11.059.

I. Eziyi and A. Krothapalli, “Sustainable rural development: Solar/Biomass hybrid renewable energy system,” in Energy Procedia, Jan. 2014, vol. 57, pp. 1492–1501, doi: 10.1016/j.egypro.2014.10.141.

J. Carroquino, R. Dufo-López, and J. L. Bernal-Agustín, “Sizing of off-grid renewable energy systems for drip irrigation in Mediterranean crops,” Renew. Energy, vol. 76, pp. 566–574, Apr. 2015, doi: 10.1016/j.renene.2014.11.069.

M. F. D. Arruda, P. C. M. Carvalho, D. J. Albiero, F. J. F. Canafistula, and A. S. Teixeira, “Solar and wind powered stand alone water pumping system,” Renew. Energy Power Qual. J., vol. 1, no. 13, pp. 114–119, 2015, doi: 10.24084/repqj13.253.

S. Sichilalu, H. Tazvinga, and X. Xia, “Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load,” Sol. Energy, vol. 135, pp. 59–69, 2016, doi: 10.1016/j.solener.2016.05.028.

I. Ouachani, A. Rabhi, I. Yahyaoui, B. Tidhaf, and T. F. Tadeo, “Renewable Energy Management Algorithm for a Water Pumping System,” in Energy Procedia, Mar. 2017, vol. 111, pp. 1030–1039, doi: 10.1016/j.egypro.2017.03.266.

M. S. Adaramola, D. A. Quansah, M. Agelin-Chaab, and S. S. Paul, “Multipurpose renewable energy resources based hybrid energy system for remote community in northern Ghana,” Sustain. Energy Technol. Assessments, vol. 22, pp. 161–170, 2017, doi: 10.1016/j.seta.2017.02.011.

F. Kose, M. H. Aksoy, and M. Ozgoren, “Experimental investigation of solar/wind hybrid system for irrigation in Konya, Turkey,” Therm. Sci., vol. 2018, 2018, doi: 10.2298/TSCI180515293K.

E. Ayodele, S. Misra, R. Damasevicius, and R. Maskeliunas, “Hybrid microgrid for microfinance institutions in rural areas – A field demonstration in West Africa,” Sustain. Energy Technol. Assessments, vol. 35, pp. 89–97, Oct. 2019, doi: 10.1016/j.seta.2019.06.009.

D. Mazzeo, “Solar and wind assisted heat pump to meet the building air conditioning and electric energy demand in the presence of an electric vehicle charging station and battery storage,” J. Clean. Prod., vol. 213, pp. 1228–1250, Mar. 2019, doi: 10.1016/j.jclepro.2018.12.212.

P. E. Campana, L. Wästhage, W. Nookuea, Y. Tan, and J. Yan, “Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems,” Solar Energy, Jan. 01, 2019. .

I. Ben Ali, M. Turki, J. Belhadj, and X. Roboam, “Systemic design and energy management of a standalone battery-less PV/Wind driven brackish water reverse osmosis desalination system,” Sustain. Energy Technol. Assessments, vol. 42, 2020, doi: 10.1016/j.seta.2020.100884.

G. Bekelea and G. Boneya, “Design of a Photovoltaic-Wind Hybrid Power Generation System for Ethiopian Remote Area,” Energy Procedia, vol. 14, pp. 1760–1765, Jan. 2012, doi: 10.1016/J.EGYPRO.2011.12.1164.



How to Cite

Souza Cruz, I., Esteves Batista, N., & Cesar Marques de Carvalho , P. . (2022). Renewable Hybrid Systems for water pumping: a review. IEEE Latin America Transactions, 20(10), 2263–2274. Retrieved from



Electric Energy