A control system for performing automated time-domain NMR measurements in Bruker Minispec spectrometers

Authors

Keywords:

Low-Field NMR, temperature control, Minispec, BVT3000

Abstract

Time-Domain Nuclear Magnetic Resonance (TD-NMR) is a powerful method used for general characterization of a variety of materials as well as to online or in-situ monitoring of process. Because of that industries increasingly benefit from its use in process analytical technology (PAT) for production control and quality assurance. However, there is an increasing number of applications that requires automated signal acquisition as a function of temperatures, a resource that is not always available in many of the commercial equipments. We describe an automation procedure using the Bruker Minispec mq20 spectrometer with the BVT3000 temperature control, building software and hardware to execute TD-NMR experiments as a function of the temperature as well as the temperature calibration in an automatic form. Despite being developed for this specific equipment, the general idea can be used in other TD-NMR equipments that could benefit from this type of automation. As a demonstration, the system was used to monitor the temperature dependence of molecular mobility in polymers. All developed codes are shared in an open repository on GitHub.

Downloads

Download data is not yet available.

Author Biographies

Rafael Fenerick, Universidade de São Paulo

Bacharel em Engenharia Elétrica pela Universidade de São Paulo (USP), atualmente sócioproprietário em CMTrade Tecnologia em Investimentos.

Eduardo Ribeiro de Azevedo, Universidade de São Paulo

Professor Doutor na Universidade de São Paulo (USP), Instituto de Física de São Carlos (IFSC), São Carlos/SP, Brasil.

Tiago Bueno de Moraes, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Exatas (ICEx)

Professor Adjunto da Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Exatas (ICEx), Belo Horizonte/MG, Brasil

References

N. E. Jacobsen, NMR Spectroscopy Explained. New Jersey: John Wiley & Sons, Ltd, 2007.

J. Mitchell, L. Gladden, T. Chandrasekera, and E. Fordham, “Low-field permanent magnets for industrial process and quality control,” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 76, pp. 1 – 60, 2014.

A. Maus, C. Hertlein, and K. Saalwächter, “A robust proton nmr method to investigate hard/soft ratios, crystallinity, and component mobility in polymers,” Macromolecular Chemistry and Physics, vol. 207, no. 13, pp. 1150–1158, 2006.

T. B. Moraes, “Transformada inversa de laplace para analise de sinais de ressonância magnética nuclear de baixo campo,” Química Nova, vol. 44, pp. 1020–1027, 2021.

H. Meling, The Miniscpec Software for Windows PNMR Server Methods, vol. 2.59. 2011.

D. Podadera, BVT3000 - Variable Temperature Unit Technical Manual, vol. Version 004. 2006.

H. Meling, BRUKER. WinEPR Acquisition Software for Windows Bruker Temperature Unit Server Methods, vol. 4.37. 2006.

H. Meling, BRUKER. Temperature-controlled Time Domain NMR measurements with minispec Plus and BVT3000 Tempering Unit. 2012.

R. Fenerick, Sistema Automatizado para Experimentos de Ressonância Magnética Nuclear em Função da Temperatura no Espectrômetro Bruker Minispec mq20 acoplado ao Controlador de Temperatura Bruker BVT3000. 54 p. monografica trabalho de conclusão de curso (engenharia elétrica), Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2018.

G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam, 1995.

Tkinter, “The python library reference.” https://docs.python.org/3/library/tkinter.html, 2021.

PyQT5, “Pyqt5 reference guide.” https://pypi.org/project/PyQt5, 2021.

Arduino, “Arduino uno.” https://www.arduino.cc, 2021.

Eletronics, “44006rc precision epoxy ntc thermistor.” https://www.farnell.com/datasheets/656935.pdf, 2008.

R. H. Garcia, J. G. Filgueiras, E. R. deAzevedo, and L. A. Colnago, “Power-optimized, time-reversal pulse sequence for a robust recovery of signals from rigid segments using time domain nmr,” Solid State Nuclear Magnetic Resonance, vol. 104, p. 101619, 2019.

A. P. Munaro, G. P. da Cunha, J. G. Filgueiras, J. M. Pinto, M. Munaro, E. R. de Azevedo, and L. C. Akcelrud, “Ageing and structural changes in pdms rubber investigated by time domain nmr,” Polymer Degradation and Stability, vol. 166, pp. 300–306, 2019.

W. M. Facchinatto, D. M. dos Santos, A. de Lacerda Bukzem, T. B. Moraes, F. Habitzreuter, E. R. de Azevedo, L. A. Colnago, and S. P. Campana-Filho, “Insight into morphological, physicochemical and spectroscopic properties of beta-chitin nanocrystalline structures,” Carbohydrate Polymers, vol. 273, p. 118563, 2021.

J. G. Filgueiras, M. F. Cobo, G. C. Faria, T. B. Moraes, and E. R. de Azevedo, “Chapter 13 dipolar based nmr methods for probing intermediate regime motions in polymers,” in NMR Methods for Characterization of Synthetic and Natural Polymers, pp. 271–298, The Royal Society of Chemistry, 2019.

J. C. Courtenay, J. G. Filgueiras, E. R. deAzevedo, Y. Jin, K. J. Edler, R. I. Sharma, and J. L. Scott, “Mechanically robust cationic cellulose nanofibril 3d scaffolds with tuneable biomimetic porosity for cell culture,” J. Mater. Chem. B, vol. 7, pp. 53–64, 2019.

F. Diuk Andrade, W. R. Newson, O. D. Bernardinelli, F. Rasheed, M. F. Cobo, T. S. Plivelic, E. Ribeiro deAzevedo, and R. Kuktaite, “An insight into molecular motions and phase composition of gliadin/glutenin glycerol blends studied by 13c solid-state and 1h time-domain nmr,” Journal of Polymer Science Part B: Polymer Physics, vol. 56, no. 9, pp. 739–750, 2018.

R. Fenerick, E. R. Azevedo, and T. B. Moraes, “Repositório GitHub: A control system for performing automated time-domain nmr measurements in bruker minispec spectrometers.” https://github.com/RafaelFenerick/automated-NMR-measurements, 2021.

Published

2022-03-03

How to Cite

Fenerick, R., Ribeiro de Azevedo, E. ., & Bueno de Moraes, T. (2022). A control system for performing automated time-domain NMR measurements in Bruker Minispec spectrometers. IEEE Latin America Transactions, 20(6), 1025–1031. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/6388

Issue

Section

Electronics