Design and Implementation of a Cost-Effective Object Tracking System Based on LoRa, Firebase, and Mapbox

Authors

Keywords:

Web services, Databases, Open source software, Global Positioning System, Wide area networks, Wireless sensor networks

Abstract

This paper describes the design and implementation of an object tracking system based on LoRa®, Firebase®, and
Mapbox®. The proposed system allows real-time visualization of the tracking nodes in a web interface following a low-cost and low-complexity design approach. The cost of each tracking node and the gateway were USD $39.38 and USD $28.00, respectively. Regarding its performance, the energy autonomy of each tracking node was 270.6 hours with maximum coverture of 896 meters under open field conditions, which is hard reduced to 114 meters under indoor conditions.

Downloads

Download data is not yet available.

Author Biographies

Juan Pablo Carvajal Acosta, Pontificia Universidad Javeriana

Nació en Bogotá, Colombia, el 21 de Septiembre de 1998. Obtuvo el grado de Ingeniero Electrónico en la Pontificia Universidad Javeriana de Bogotá. Actualmente es Desollador Junior en el área de las transacciones por antenas en RF. Sus intereses se enfocan en los sistemas digitales enfocado al internet de las cosas (Iot) y el diseño en FPGA.

Robert Alexis Urbina Mojica, Pontificia Universidad Javeriana

Nació en Cúcuta, Colombia, el 6 de Octubre de 1998. Obtuvo el grado de Ingeniero Electrónico en la Pontificia Universidad Javeriana de Bogotá. Actualmente es ingeniero junior en investigación en el área de electrónica de potencia. Sus intereses se enfocan al desarrollo de energías renovables, recolección de energía de fuentes no convencionales y sistemas embebidos digitales.

Luis Carlos David Baron Mosquera, Pontificia Universidad Javeriana

Nació en Bogotá, Colombia, el 20 de agosto de 1999. Obtuvo el grado de Ingeniero Electrónico en la Pontificia Universidad Javeriana. Actualmente, él es un ingeniero dedicado al mantenimiento e instalación de equipos médicos para imágenes diagnósticas. Sus intereses de investigación están enfocados en las áreas de cosechadores de energía eléctrica y bioingeniería.

Carlos Paez-Rueda, Pontificia Universidad Javeriana

(S’00-M’03-SM’08) was born on March 9, 1973, in Cúcuta - Colombia. He received the B.S. degree in Electronics Engineering from Pontificia Universidad Javeriana, Colombia, in 1997. He received M.S. degree from Universidad de los Andes, Colombia, in 2002. He graduated as a Specialist in Research and Education from Universidad Sergio Arboleda, Colombia, in 2004. Finally, he obtained his doctoral degree in engineering at the Universidad de los Andes, Colombia, in 2017. His employment experience included several Telecommunication companies in Colombia. Since 2006, he is professor in the Electronics Department with Pontificia Universidad Javeriana. His working field includes simulation models and optimization algorithms for telecommunications, computational electromagnetics (CEM) and design of passive radio frequency devices.

Arturo Fajardo, PONTIFICIA UNIVERSIDAD JAVERIANA

(S’04-M’11-SM’19) Se le otorgo el título de Ingeniero Electrónico y de Maestro en Ingeniería Electrónica por la Pontificia Universidad Javeriana, Colombia, en 2002 y 2008, respectivamente. En 2018 obtuvo el título de Doctor en Ingeniería Eléctrica de la Universidad Federal de Santa Catarina. Desde el 2006, ha sido profesor en el Departamento de Electrónica de la Pontificia Universidad Javeriana. Su interés en la investigación actual, incluye circuitos de RF de alta eficiencia para comunicaciones inalámbricas, redes de área del corporal, transferencia de energía inalámbrica y electrónica de instrumentación inalámbrica.

References

R. Priyadarshi, B. Gupta, and A. Anurag, “Deployment techniques in

wireless sensor networks: a survey, classification, challenges, and future

research issues,” J. Supercomput., Jan. 2020.

F. Giménez, C. Zerbini and G. Riva, .Extending SMS Service Coverage

in Rural Areas by using LoRa Communication Technology,ïn IEEE Latin

America Transactions, vol. 18, no. 02, pp. 214-222, February 2020, doi:

1109/TLA.2020.9085273.

P. Lai, H. Huang, M. Sheu, C. Wu, J. Le, and T. Chen, “Bike Sensor System

Design for Safety and Healthy Riding,” in 2018 IEEE International

Conf. Consum. Electron. Taiwan (ICCE-TW), 2018, pp. 1–2, 1.

D. H. Kim, J. B. Park, J. H. Shin, and J. D. Kim, “Design and

implementation of object tracking system based on LoRa,” in 2017 Int.

Conf. on Inform. Netw. (ICOIN), 2017, pp. 463–467.

R. Osorio Comparan, D. Vasquez, I. Lopez Juarez, M. Pena, J. Savage

and G. Lefranc, "System Administration and Monitoring Moving Objects

Using Mobile Devices,ïn IEEE Latin America Transactions, vol. 13, no.

, pp. 1934-1939, June 2015, doi: 10.1109/TLA.2015.7164220.

S.-Y. Wang et al., Performance of LoRa-Based IoT Applications on

Campus. 2017.

G. Lian and F. Yu, “A data platform based on web service for wireless

sensor network,” in 2014 4th IEEE Int. Conf. on Inform. Sci. and

Technol., 2014, pp. 670–673.

T. Arai, T. Yoshizawa, T. Aoki, K. Zempo, and Y. Okada, “Evaluation of

Indoor Positioning System based on Attachable Infrared Beacons in Metal

Shelf Environment,” in 2019 IEEE International Conference on Consumer

Electronics (ICCE), 2019, pp. 1–4, doi: 10.1109/ICCE.2019.8662007.

M. Ochiai, M. Fujii, A. Ito, Y. Watanabe, and H. Hatano, “A study on

indoor position estimation based on fingerprinting using GPS signals,”

in 2014 International Conference on Indoor Positioning and Indoor

Navigation (IPIN), 2014, pp. 727–728, doi: 10.1109/IPIN.2014.7275552.

R. I. S. Pereira, S. C. S. Jucá, P. C. M. Carvalho and C. P. Souza,

ÏoT Network and Sensor Signal Conditioning for Meteorological

Data and Photovoltaic Module Temperature Monitoring,ïn IEEE Latin

America Transactions, vol. 17, no. 06, pp. 937-944, June 2019, doi:

1109/TLA.2019.8896816.

A. Zourmand, A. L. K. Hing, C. W. Hung, and M. AbdulRehman, “Internet

of Things (IoT) using LoRa technology,” in 2019 IEEE International

Conference on Automatic Control and Intelligent Systems (I2CACIS),

, pp. 324–330, doi: 10.1109/I2CACIS.2019.8825008.

F. Samie, L. Bauer, and J. Henkel, IoT Technologies for Embedded

Computing: A Survey. 2016.

D. Croce, D. Garlisi, F. Giuliano, A. L. Valvo, S. Mangione, and I.

Tinnirello, “Performance of LoRa for Bike-Sharing Systems,” in 2019

AEIT International Conference of Electrical and Electronic Technologies

for Automotive (AEIT AUTOMOTIVE), 2019, pp. 1–6, doi:

23919/EETA.2019.8804519.

Haxhibeqiri, Jetmir, Karaagac, Abdulkadir, Van den Abeele, Floris ,

Joseph, Wout , Moerman, Ingrid , Hoebeke, Jeroen. (2017). LoRa indoor

coverage and performance in an industrial environment: Case study. 1-8.

1109/ETFA.2017.8247601.

“IEEE Standard for Local and metropolitan area networks–Part 15.4:

Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Std

15.4-2011 (Revision of IEEE Std 802.15.4-2006). pp. 1–314, 2011,

doi: 10.1109/IEEESTD.2011.6012487.

L. R. Prando, E. R. de Lima, L. S. de Moraes, M. B. Hamerschmidt, and

G. Fraindenraich, “Experimental Performance Comparison of Emerging

Low Power Wide Area Networking (LPWAN) Technologies for IoT,” in

IEEE 5th World Forum on Internet of Things (WF-IoT), 2019, pp.

–908, doi: 10.1109/WF-IoT.2019.8767343.

C. Yao Yuguang, Zijun Ma, “LoSee: Long-Range Shared Bike Communication

System Based On LoRaWAN Protocol,” 2018.

W. San-Um, P. Lekbunyasin, M. Kodyoo, W. Wongsuwan, J. Makfak,

and J. Kerdsri, “A long-range low-power wireless sensor network based

on U-LoRa technology for tactical troops tracking systems,” in 2017 Third

Asian Conference on Defence Technology (ACDT), 2017, pp. 32–35, doi:

1109/ACDT.2017.7886152.

datasheet/sx1272.pdf.

Stack Overflow: https://electronics.stackexchange.com/. Ünderstanding

the relationship between LoRa chips, chirps, symbols and bits"

G. Lian and F. Yu, “A data platform based on web service for wireless

sensor network,” in 2014 4th IEEE Int. Conf. on Inform. Sci. and

Technol., 2014, pp. 670–673.

LoRaWAN™ 1.0.3 Regional Parameters -

LoRa Alliance. https://lora-alliance.org/wpcontent/

uploads/2020/11/lorawan_regional_parameters_v1.0.3reva_0.pdf

Microchip Technology Inc. RN2903 LoRa™ Technology Module.

http://ww1.microchip.com/downloads/en/ DeviceDoc/40001811A.pdf

Microchip Technology Inc.2021

https://www.nmea.org/, access: 10.02.2018

Min Chen and G. A. Rincon-Mora, “ Accurate electrical battery model

capable of predicting runtime and I-V performance,” in IEEE Transactions

on Energy Conversion, vol. 21, no. 2, pp. 504-511, June 2006, doi:

1109/TEC.2006.874229.

u-blox NEO-6u-blox 6 GPS Modules DataSheets.

https://www.u-blox.com/sites/default/files/products/documents/NEO-

_DataSheet_(GPS.G6-HW-09005).pdf

Carvajal, J. P. (2021). A low cost web interface for object tracking based

on wireless sensor network [E-book]. In A. Fajardo C. Páez Rueda (Eds.),

Advanced Computing and Intelligent Technologies (ch. 32). Springer.

Published

2022-06-08

How to Cite

Carvajal Acosta, J. P., Urbina Mojica, R. A., Baron Mosquera, L. C. D., Paez-Rueda, C., & Fajardo, A. (2022). Design and Implementation of a Cost-Effective Object Tracking System Based on LoRa, Firebase, and Mapbox. IEEE Latin America Transactions, 20(7), 1075–1084. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/6253