Multiparametric Identification of Favorable Regions for Wind or Solar Generation in the State of Pernambuco
Keywords:
Wind generation, solar generation, digital image processing, algorithm, parametrization, decision making, geoprocessingAbstract
The capacity for renewable energy generation, particularly solar and wind, tends to grow over the years. However, locating regions favorable to the development of solar and wind generation is not trivial and is subject to errors due to the social, environmental, economic, political and administrative aspects of the regions. Therefore, this article proposes an algorithm based on digital image processing, capable of performing a variable weight multi-parameter evaluation and quantifying how favorable a given territorial region is for the implantation of wind or solar plants. Maps of the region under analysis are taken as input information. The region taken as a case study is the Brazilian state of Pernambuco, due to the access to data related to the evaluated characteristics: solar radiation, solar insolation, precipitation, air humidity, temperature, electrogeography, demographic density, environmental protection areas, slope, hydrography, wind speed, urban spot and the presence of aerodromes. It was possible to list for each type generation (wind or solar, exclusively), the 15 most favorable regions for the implementation plants. Furthermore, the proposed technique presents a practical indifference to the territorial extension of the evaluated region, which can comprehend a micro-region or an entire continent, requiring only that sufficiently detailed maps of the evaluated characteristics be provided.
Downloads
References
IEA, “Renewables 2021: Analysis and forecasts to 2026,” Paris, France, Dec. 2021. [Online]. Available: https://www.iea.org/reports/renewables-2021 , Accessed on Dec.14, 2021.
Y. Kumar et al. “Wind energy: Trends and enabling technologies,” Renew Sustain Energy Rev., vol. 53, pp 209-224, Jan. 2016, doi: 10.1016/j.rser.2015.07.200.
N. Kannan and D. Vakeesan, “Solar energy for future world: -A review,” Renew Sustain Energy Rev., vol. 62, pp. 1092-1105, Sept. 2016, doi: 10.1016/j.rser.2016.05.022.
R. Wiser et al. “Expert elicitation survey on future wind energy costs,” Nat Energy, vol. 1, pp. 1-8 Sept. 2016, doi: 10.1038/nenergy.2016.135.
V. Devabhaktuni et al. “Solar energy: Trends and enabling technologies,” Renew Sustain Energy Rev., vol. 19, pp. 555-564, Mar. 2013, doi: 10.1016/j.rser.2012.11.024.
D. Kumar and K. Chatterjee, “A review of conventional and advanced MPPT algorithms for wind energy systems,” Renew Sustain Energy Rev., vol. 55, pp 957-970, Mar. 2016, doi: 10.1016/j.rser.2015.11.013.
A. R. Youssef et al., “Advanced multi-sector P&O maximum power point tracking technique for wind energy conversion system,” 2019. Int. J. Electr. Power Energy Syst., vol. 107, pp 89-97, May 2019, doi: 10.1016/j.ijepes.2018.10.034.
S. Selvakumar, M. Madhusmita, C. Koodalsamy, S. P. Simon and Y. R. Sood, "High-Speed Maximum Power Point Tracking Module for PV Systems," IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1119-1129, Feb. 2019, doi: 10.1109/TIE.2018.2833036.
B. Yan et al., “Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine”, Energy Convers. Manag, vol. 133, pp. 427-443, Feb. 2017, doi: 10.1016/j.enconman.2016.10.062.
Verma, Deepak, et al. “Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems,” Renew Sustain Energy Rev., vol. 54, pp. 1018-1034, Feb. 2016, doi: 10.1016/j.rser.2015.10.068.
J. P. Ram, N. Rajasekar, M. Miyatake, “Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review,” Renew. Sust. Energ. Rev., vol 73, pp 1138-1159, Jun. 2017, doi: 10.1016/j.rser.2017.02.009.
N. Karami, N. Moubayed, R. Outbib, “General review and classification of different MPPT Techniques,” Renew Sustain Energy Rev., vol. 68, pp. 1-18, Feb. 2017, doi: 10.1016/j.rser.2016.09.132.
A.B.O. Neto, “Identificação de Regiões Propícias à Geração Solar e Eólica Empregando Processamento Digital de Imagens,” M.Sc. dissertation, Dept. Elect. Eng, Campina Grande Fed. Univ., Campina Grande, PB, BR, 2016.
Agência Nacional De Energia Elétrica (ANEEL), “ANEEL Aprova Regras para Facilitar a Geração de Energia nas Unidades Consumidoras,” Apr. 17, 2012 [Online]. Avaliable: <http://www.aneel.gov.br/aplicacoes/noticias/Output_Noticias.cfm?Identidade=5457&id_area=90>. Accessed on dec. 12, 2015.
T. C. Carneiro, S. P. Melo, P.C.M. Carvalho, A. P. de S. Braga, "Particle Swarm Optimization method for estimation of Weibull parameters: A case study for the Brazilian northeast region," Renew. Energ., vol. 86, pp. 751 - 759, Feb. 2016, doi: 10.1016/j.renene.2015.08.060.
P. Araujo and M. Marinho, “Analysis of Hydro - Wind Complementarity in State of Pernambuco, Brazil by means of Weibull Parameters,” IEEE Lat. Am. Trans., vol. 17, no. 04, pp. 556-563, Apr. 2019, doi: 10.1109/TLA.2019.8891879.
E. B. Ssekulima, M. B. Anwar, A. Al Hinai and M. S. El Moursi, “Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: A review,” IET Renew. Power Gener., vol. 10, no. 7, pp. 885-989, Aug. 2016, doi: 10.1049/iet-rpg.2015.0477.
E. D. Obando, S. X. Carvajal and J. Pineda Agudelo, “Solar Radiation Prediction Using Machine Learning Techniques: A Review,” IEEE Lat. Am. Trans., vol. 17, no. 04, pp. 684-697, Apr. 2019, doi: 10.1109/TLA.2019.8891934
R. H. Inman, H. T. C. Pedro, C. F.M. Coimbra, “Solar forecasting methods for renewable energy integration,” Prog. Energy Combust. Sci., vol. 39, no. 6, pp. 535-576, Dec. 2013, doi: 10.1016/j.pecs.2013.06.002.
L. T. Wong, W.K. Chow, “Solar radiation model.” Appl. Energy, vol. 69, no. 3, pp-191-224, July 2001, doi: 10.1016/S0306-2619(01)00012-5.
J. Kleissl, “Terms and definitions” in Solar energy forecasting and resource assessment, 1st ed., SD, USA, AP, 2013, pp. 1-17
T. S. Viana, R. Rüther, F.R. Martins, E.B. Pereira, “Assessing the potential of concentrating solar photovoltaic generation in Brazil with satellite-derived direct normal irradiation,” Sol Energy, vol. 85, no. 3 pp. 486-495, Mar. 2011, doi: 10.1016/j.solener.2010.12.015.
M. H. Chung, “Estimating Solar Insolation and Power Generation of Photovoltaic Systems Using Previous Day Weather Data,” Adv. Civ. Eng., vol. 2020, pp. 1-13, Feb. 2020, doi: 10.1155/2020/8701368.
J. J. Wysocki and P. Rappaport, “Effect of Temperature on Photovoltaic Solar Energy Conversion,” J. Appl. Phys., vol. 31, no. 3, pp. 571-578, Mar. 1960, doi: 10.1063/1.1735630.
E. Skoplaki and J.A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol Energy., vol. 83, no. 5, pp. 614-624, May. 2009, doi: 0.1016/j.solener.2008.10.008.
S. M. J Baban, T. Parry, "Developing and applying a GIS-assisted approach to locating wind farms in the UK." Renew. Energ., vol. 24, no. 1, pp. 59-71, Sept. 2001, doi: 10.1016/S0960-1481(00)00169-5.
H. S. Hansen, “GIS-based multi-criteria analysis of wind farm development,” in Proc. of the 10th Scand. Res. Conf. Geogr. Inf Sci (ScanGIS), Stocholm, Sweden, June 2005, pp. 75–85.
D. Mentis et al., “Assessing the technical wind energy potential in Africa a GIS-based approach.” Renew. Energ., vol. 83, pp. 110-125, Nov. 2015, doi: 10.1016/j.renene.2015.03.072.
H. Z. Al Garni and A. Awasthi, “Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia.” Appl. Energ., vol. 206, pp. 1225-1240, Nov. 2017, doi: 10.1016/j.apenergy.2017.10.024.
G. Rediske et al., “Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil.” Energ. vol. 197, Apr. 2020, doi: 10.1016/j.energy.2020.117167.
Y. Sun et al., “GIS‐based multiregional potential evaluation and strategies selection framework for various renewable energy sources: a case study of eastern coastal regions of China.” Energ. Sci Eng., no.5 pp. 123-140, Jun. 2019, doi: 10.1002/ese3.160.
L. F. Pomares, A. V. Pérez, M. R. Gámez, "La geografia de la provincia pinar del rio y los sistemas fotovoltaicos conectados a la rede," XVI Convención Científica de ingeniería y Arquitetura, La Habana, Cuba, Nov. 2012.
M. T. Chaichan and H.A. Kazem, “Experimental analysis of solar intensity on photovoltaic in hot and humid weather conditions,” Int. J. Eng. Res., vol 7, no.3, pp. 91-96, Mar. 2016.
A. B. O. Neto et al., “Um Algoritmo Baseado em PDI para Localização de Regiões Propícias à Instalação de Usinas Solares,” V Simp. Bras. Sist. Elétr., Foz do Iguaçu, Paraná, Apr. 2014.
A. B. O. Neto et al. “Um Algoritmo Baseado em PDI para Localização de Regiões Propícias à Instalação de Usinas Solares e Um Estudo de Caso,” Congreso International de Alta Tensión y Aislamiento Eléctrico – ALTAE 2015. Portoviejo, Manabi, 2015.
CHESF, “Sistemas de Transmissão”, Brazil, July 31, 2019. [Online] Available: https://www.chesf.gov.br/SistemaChesf/Pages/SistemaTransmissao/SistemaTransmissao.aspx, Accessed on: 6 ago. 2020.
L. T. Witzler, " Metodologia para reconstrução de séries históricas de vento e geração eólica visando a análise da complementariedade energética no Sistema Interligado Nacional.," M.Sc. dissertation, Dept. Energ. Eng. Elec. Auto., Polytec. School Univ. São Paulo, São Paulo, SP, BR, 2015, doi: 10.11606/D.3.2016.tde-31122015-105629
J. Sun et al., "Renewable energy transmission by HVDC across the continent: system challenges and opportunities," CSEE J. Power Energy Syst., vol. 3, no. 4, pp. 353-364, Dec. 2017, doi: 10.17775/CSEEJPES.2017.01200.
Departamento Nacional de Águas e Energia Elétrica (DNAEE), “Relatório Anual, pg. 26,” 1996. Accessed on: Apr. 20, 2021.
J. Bigaman, “Electrical Transmission Grid: Hearing Before the Committee on Energy and Natural Resources, United States Senate, One Hundred Tenth Congress, Second Session, to Conduct Oversight on the State of the Nation's Transmission Grid, as Well as the Implementation of the 2005 Energy Policy Act Transmission Provisions, Including Reliability, Siting and Infrastructure Investment” Washington, USA, Vol. 4, Jul. 2008,Available: https://books.google.com.br/books?id=oNTSDdsd4noC&lpg=PA115&dq=build%20renewable%20generation%20close%20transmission%20lines&hl=ptBR&pg=PP3#v=thumbnail&q&f=false, Accessed on Apr.20, 2021
L. G. M. Oliveira, “Avaliação de fatores que influenciam na estimativa da geração e operação de sistemas fotovoltaicos conectados à rede elétrica.,” M. Sc. dissertation, Dept. Energ. Eng. Elec., Univ. Minas Gerais, Belo Horizonte, MG, BR, 2017.
B. E. M. Montezano, “Estratégias para identificação de sítios eólicos promissores usando sistema de informação geográfica e algoritmos evolutivos,” M. Sc. dissertation, Dept. Eng. Civ., Univ. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR, 2012.
A. T. Almeida and A. P. C. S. Costa, “modelo de decisão multicritério para priorização de sistemas de informação com base no método promethee,” Scielo Gest. Prod, v. 9, n. 2, p. 201-214, Aug. 2002, Accessed on: Apr. 20, 2021, doi: https://doi.org/10.1590/S0104-530X2002000200007, [online].
G. Rediske et al. “Identificação de locais ideais para instalação de usinas de energia fotovoltaica: um estudo de caso,” XXXIX Encontro Nacional de Engenharia de Produção. Santos, São Paulo, 2019.