Zero Energy Balance Buildings: Definitions, Current Challenges and Future Opportunities
Keywords:
Zero Energy Campus – ZEC, Zero Energy Communities, Energy efficiency, Zero Energy BuildingAbstract
This article reviews the definitions related to buildings that promote zero energy balance. Besides, this article identifies the main challenges for the dissemination of and overcrowding of these sustainable buildings, which are called Zero Energy Buildings -ZEB. The analyzed literature shows that the main challenges are to include technical, economic, social, and environmental aspects of each territory in the scenarios and proposed incentives since the roadmaps adopted by the countries will depend on their industrial development. In emerging countries, the roadmap development process should be needs-based, not solution-based. This article proposes, as opportunities to disseminate and spread the ZEB in the territories, to contemplate a type of regulatory scenarios that promote the development of passive designs that promote the construction of new buildings based on promoting the use of bioclimatic and advances in new materials that improve comfort according to the needs of each region. On the other hand, the design of direct and indirect incentives focused on research and innovation of own developments related to active designs for the renovation of existing buildings is proposed.
Downloads
References
International Energy Agency - IEA, “Electricity consumption, world 1990-2017. Data & Statistics.” https://www.iea.org/data-and-statistics/?country=WORLD&fuel=Energy consumption&indicator=Electricity consumption (accessed Jul. 09, 2020).
L. Lan, K. L. Wood, and C. Yuen, “A holistic design approach for residential net-zero energy buildings: A case study in Singapore,” Sustain. Cities Soc., vol. 50, no. June, p. 101672, 2019, doi: 10.1016/j.scs.2019.101672.
X. Li, A. Lin, C.-H. Young, Y. Dai, and C.-H. Wang, “Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building,” Appl. Energy, vol. 254, no. May, p. 113709, 2019, doi: 10.1016/j.apenergy.2019.113709.
P. Huang and Y. Sun, “A clustering based grouping method of nearly zero energy buildings for performance improvements,” Appl. Energy, vol. 235, no. September 2018, pp. 43–55, 2019, doi: 10.1016/j.apenergy.2018.10.116.
IEA (International Energy Agency), “World Energy Outlook 2019.” https://www.oecd-ilibrary.org/energy/world-energy-outlook-2019_caf32f3b-en (accessed Nov. 10, 2020).
International Energy Agency - IEA, “IEA webstore. GlobalABC Roadmap for Buildings and Construction 2020-2050,” Jul. 13, 2020. https://webstore.iea.org/globalabc-roadmap-for-buildings-and-construction-2020-2050 (accessed Nov. 10, 2020).
M. Guerrieri, M. La Gennusa, G. Peri, G. Rizzo, and G. Scaccianoce, “University campuses as small-scale models of cities: Quantitative assessment of a low carbon transition path,” Renew. Sustain. Energy Rev., vol. 113, no. July, p. 109263, 2019, doi: 10.1016/j.rser.2019.109263.
L. Belussi et al., “A review of performance of zero energy buildings and energy efficiency solutions,” J. Build. Eng., vol. 25, no. April, p. 100772, 2019, doi: 10.1016/j.jobe.2019.100772.
Internatinal Energy Agency - IEA, “Climate change.” https://www.iea.org/topics/climatechange/ (accessed Nov. 07, 2019).
D. Kolokotsa, D. Rovas, E. Kosmatopoulos, and K. Kalaitzakis, “A roadmap towards intelligent net zero- and positive-energy buildings,” Sol. Energy, vol. 85, no. 12, pp. 3067–3084, 2011, doi: 10.1016/j.solener.2010.09.001.
X. Yang, S. Zhang, and W. Xu, “Impact of zero energy buildings on medium-to-long term building energy consumption in China,” Energy Policy, vol. 129, no. January 2019, pp. 574–586, 2019, doi: 10.1016/j.enpol.2019.02.025.
L. Gentile-Polese et al., “Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment,” Golden, CO (United States), Feb. 2014. doi: 10.2172/1126300.
International Energy Agency - IEA, “Impacto del Covid-19 en la electricidad - Análisis - IEA,” 2021. https://www.iea.org/reports/covid-19-impact-on-electricity (accessed Apr. 06, 2021).
International Energy Agency - IEA, “Build Smart: la estrategia de edificios de Canadá - Políticas - IEA,” 2020, Sep. . https://www.iea.org/policies/7954-build-smart-canadas-buildings-strategy?q=SMART buildings&s=1 (accessed Apr. 06, 2021).
Z. Liu, Q. Zhou, Z. Tian, B. He, and G. Jin, “A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China,” Renew. Sustain. Energy Rev., vol. 114, no. February 2019, p. 109314, 2019, doi: 10.1016/j.rser.2019.109314.
S. B. Sadineni, S. Madala, and R. F. Boehm, “Passive building energy savings: A review of building envelope components,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3617–3631, 2011, doi: 10.1016/j.rser.2011.07.014.
Y. Sun, G. Huang, X. Xu, and A. C. K. Lai, “Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls,” Appl. Energy, vol. 212, pp. 565–576, Feb. 2018, doi: 10.1016/j.apenergy.2017.11.076.
X. Chen, H. Yang, and L. Lu, “A comprehensive review on passive design approaches in green building rating tools,” Renew. Sustain. Energy Rev., vol. 50, pp. 1425–1436, 2015, doi: 10.1016/j.rser.2015.06.003.
S. Attia et al., “Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe,” Energy Build., vol. 155, no. 2017, pp. 439–458, 2017, doi: 10.1016/j.enbuild.2017.09.043.
S. M. Silva, R. Mateus, L. Marques, M. Ramos, and M. Almeida, “Contribution of the solar systems to the nZEB and ZEB design concept in Portugal – Energy, economics and environmental life cycle analysis,” Sol. Energy Mater. Sol. Cells, vol. 156, no. 2016, pp. 59–74, 2016, doi: 10.1016/j.solmat.2016.04.053.
“Energy performance of buildings directive | Energy.” https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed Jun. 20, 2020).
A. Hamburg, K. Kuusk, A. Mikola, and T. Kalamees, “Realisation of energy performance targets of an old apartment building renovated to nZEB,” Energy, vol. 194, p. 116874, 2020, doi: 10.1016/j.energy.2019.116874.
K. Heine, A. Thatte, and P. C. Tabares-Velasco, “A simulation approach to sizing batteries for integration with net-zero energy residential buildings,” Renew. Energy, vol. 139, pp. 176–185, Aug. 2019, doi: 10.1016/j.renene.2019.02.033.
G. Pandey, S. N. Singh, B. S. Rajpurohit, and F. M. Gonzalez-Longatt, “Smart DC Grid for Autonomous Zero Net Electric Energy of Cluster of Buildings,” in IFAC-PapersOnLine, Jan. 2015, vol. 48, no. 30, pp. 108–113, doi: 10.1016/j.ifacol.2015.12.362.
L. Wang, J. Gwilliam, and P. Jones, “Case study of zero energy house design in UK,” Energy Build., vol. 41, no. 11, pp. 1215–1222, Nov. 2009, doi: 10.1016/j.enbuild.2009.07.001.
E. F. Zalamea-León and R. H. García-Alvarado, “Integración de captación activa y pasiva en viviendas unifamiliares de emprendimientos inmobiliarios,” Ambient. Construído, vol. 18, no. 1, pp. 445–461, 2017, doi: 10.1590/s1678-86212018000100231.
K. B. Dokka, T. H., Sartori, I., Thyholt, M., Lien, K., & Lindberg, “A Norwegian zero emission building definition. Passivhus Norden, 15-17.”
D. H. W. Li, L. Yang, and J. C. Lam, “Zero energy buildings and sustainable development implications - A review,” Energy, vol. 54. Elsevier Ltd, pp. 1–10, Jun. 01, 2013, doi: 10.1016/j.energy.2013.01.070.
I. B. E. E. (2018) . International Partnership for Energy Efficiency Cooperation: Paris, France.Taskgroup, “Zero Energy Building Definitions and Policy Activity-An International Review.,” [Online]. Available: https://scholar.google.es/scholar?hl=es&as_sdt=0,5&q=Zero+Energy+Building+Definitions+and+Policies+Activity-An+International+Review+(2018)&btnG&pli=1.
P. P. S. D. M. and C. D. Torcellini, “Zero Energy Buildings: A Critical Look at the Definition; Preprint (Conference) | OSTI.GOV,” Jun. 01, 2006. https://www.osti.gov/biblio/883663 (accessed Jun. 17, 2020).
J. Laustsen, “Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper (Book) | ETDEWEB,” Mar. 15, 2008. https://www.osti.gov/etdeweb/biblio/971038 (accessed Jun. 17, 2020).
Dr. Sam C. M. Hui, “Zero energy and zero carbon buildings: myths and facts,” no. September, pp. 1–13, 2010, [Online]. Available: https://www.researchgate.net/publication/281901690_Zero_energy_and_zero_carbon_buildings_myths_and_facts.
M. Noguchi, A. Athienitis, V. Delisle, J. Ayoub, and B. Berneche, “Net Zero Energy Homes of the Future: A Case Study of the ÉcoTerra TM House in Canada Masa,” 2008.
S. Rosta, R. Hurt, R. Boehm, and M. J. Hale, “Performance of a zero-energy house,” J. Sol. Energy Eng. Trans. ASME, vol. 130, no. 2, pp. 0210061–0210064, May 2008, doi: 10.1115/1.2844429.
J. Kramer, A. Krothapalli, and B. Greska, “The off-grid zero emission building,” in Proceedings of the Energy Sustainability Conference 2007, Feb. 2007, pp. 573–580, doi: 10.1115/ES2007-36170.
S. Kilkis, “A new metric for net- zero carbon buildings,” in Proceedings of the Energy Sustainability Conference 2007, Feb. 2007, pp. 219–224, doi: 10.1115/ES2007-36263.
M. P. E. De Angelis, A.L.C. Ciribini, L.C. Tagliabue, “The Brescia smart campus demonstrator. Renovation toward a zero energy classroom building.”
A. J. Marszal et al., “Zero Energy Building - A review of definitions and calculation methodologies,” Energy Build., vol. 43, no. 4, pp. 971–979, Apr. 2011, doi: 10.1016/j.enbuild.2010.12.022.
A. A. Muresan and S. Attia, “Energy efficiency in the Romanian residential building stock: A literature review,” Renew. Sustain. Energy Rev., vol. 74, no. December 2016, pp. 349–363, 2017, doi: 10.1016/j.rser.2017.02.022.
O. Gönülol and A. Tokuç, “Net Zero Energy Residential Building Architecture in the Future,” Exergetic, Energ. Environ. Dimens., pp. 39–53, 2017, doi: 10.1016/B978-0-12-813734-5.00002-0.
“Zebra2020 - Estrategia de construcción de energía casi cero 2020.” https://zebra2020.eu/ (accessed Jun. 20, 2020).
I. Juraga, M. Paviotti, and B. Berger, “The Environmental Noise Directive at a turning point.”
G. B.-F. Register and undefined 2007, “Strengthening federal environmental, energy, and transportation management.”
Víctor Severino Mendoza Velázquez, “La política energética de los Estados Unidos de América durante el,” Feb. 2018.
Natural Resources Canada, “Details of the R-2000 Standard ,” 2012. https://www.nrcan.gc.ca/homes/learn-about-professional-opportunities/become-energy-efficient-builder/details-r-2000-standard/20588 (accessed Jun. 17, 2020).
“R2000 Standard,” 2012.
M. Leckner and R. Zmeureanu, “Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem,” Appl. Energy, vol. 88, no. 1, pp. 232–241, 2011, doi: 10.1016/j.apenergy.2010.07.031.
R. W. Murphy, C. K. Rice, V. D. Baxter, and W. G. Craddick, “Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report,” Oak Ridge, TN (United States), Sep. 2007. doi: 10.2172/969947.
“Ministry of Housing and Urban-Rural Development (MOHURD), PRC | Regional Knowledge Sharing Initiative.” http://rksi.org/organizations/ministry-housing-and-urban-rural-development-mohurd-prc (accessed Jul. 07, 2020).
M. Lu and J. H. K. Lai, “Building energy: A review on consumptions, policies, rating schemes and standards,” Energy Procedia, vol. 158, pp. 3633–3638, 2019, doi: 10.1016/j.egypro.2019.01.899.
H. Li, S. Zhang, M. Okumiya, K. Y.-B. Sci, and undefined 2017, “Japan zero energy building development status.”
“Act on the Rational Use of Energy, Japan.” http://www.japaneselawtranslation.go.jp/law/detail_main?id=71&vm=4&re= (accessed Jul. 01, 2020).
X. Huo and A. T. W. Yu, “A comparison of green building policies in asian countries or regions,” in Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate, 2016, 2018, no. 209889, pp. 19–33, doi: 10.1007/978-981-10-6190-5_3.
H. S. Suh and D. D. Kim, “Energy performance assessment towards nearly zero energy community buildings in South Korea,” Sustain. Cities Soc., vol. 44, pp. 488–498, Jan. 2019, doi: 10.1016/j.scs.2018.10.036.
ENTRANZE, “Policies to ENforce the TRAnsition to Nealy Zero Energy in the EU-27.” https://www.entranze.eu/about/home (accessed Apr. 06, 2021).
S. Attia, “Roadmap for NZEB Implementation,” Net Zero Energy Build., pp. 343–369, 2018, doi: 10.1016/b978-0-12-812461-1.00012-5.
La Agencia Internacional de Energía (AIE), Comisión Económica para América Latina y el Caribe (CEPAL), and Ministerio de Minas y Energía(Perú), América Latina y el Caribe Recomendaciones de Políticas de Eficiencia Energética Regionales. 2014.
W. E. Council, “World Energy Trilemma Priority actions on climate change and how to balance the trilemma,” WEC, p. 53, 2015.
International Energy Agency, “Energy, Climate Change and Enviroment 2016 Insights,” p. 133, 2016, doi: 10.1787/9789264266834-en.
International Energy Agency, “Programa Operativo Infraestructura y Medio Ambiente 2014-2020 - Políticas - IEA,” 2020, Sep. . https://www.iea.org/policies/12231-operational-programme-infrastructure-and-environment-2014-2020?q=SMART buildings&s=1 (accessed Apr. 06, 2021).
D. Besser and F. U. Vogdt, “First steps towards low energy buildings: How far are Chilean dwellings from nearly zero-energy performances?,” Energy Procedia, vol. 132, pp. 81–86, 2017, doi: 10.1016/J.EGYPRO.2017.09.642.
C. Y. T. MINISTERIO DE VIVIENDA, “RESOLUCIÓN NUMERO 0549 DE 2015,” 2015. http://www.minvivienda.gov.co/ResolucionesVivienda/0549 - 2015.pdf (accessed Jul. 16, 2019).
S. Attia, NZEB Case Studies and Learned Lessons. 2018.
B. Dean, “Towards zero-emission efficient and resilient buildings.: Global Status Report,” 2016.
F. Salamone, L. Belussi, L. Danza, T. Galanos, M. Ghellere, and I. Meroni, “Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality,” Sensors, vol. 17, no. 5, p. 1021, May 2017, doi: 10.3390/s17051021.
Y. Lu, X. P. Zhang, J. Li, Z. Huang, C. Wang, and L. Luo, “Design of a reward-penalty cost for the promotion of net-zero energy buildings,” Energy, vol. 180, pp. 36–49, 2019, doi: 10.1016/j.energy.2019.05.049.
K. F. Fong and C. K. Lee, “Towards net zero energy design for low-rise residential buildings in subtropical Hong Kong,” Appl. Energy, vol. 93, pp. 686–694, 2012, doi: 10.1016/j.apenergy.2012.01.006.
L. F. Cabeza and M. Chàfer, “Technological options and strategies towards zero energy buildings contributing to climate change mitigation: A systematic review,” Energy Build., vol. 219, p. 110009, Jul. 2020, doi: 10.1016/J.ENBUILD.2020.110009.
E. Rodriguez-Ubinas et al., “Passive design strategies and performance of Net Energy Plus Houses,” Energy Build., vol. 83, pp. 10–22, Nov. 2014, doi: 10.1016/j.enbuild.2014.03.074.
P. Huang, G. Huang, and Y. Sun, “A robust design of nearly zero energy building systems considering performance degradation and maintenance,” Energy, vol. 163, pp. 905–919, Nov. 2018, doi: 10.1016/j.energy.2018.08.183.
H. Li, S. Wang, and R. Tang, “Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions,” Appl. Energy, vol. 254, p. 113683, Nov. 2019, doi: 10.1016/j.apenergy.2019.113683.
C. Peng, L. Huang, J. Liu, and Y. Huang, “Energy performance evaluation of a marketable net-zero-energy house: Solark I at Solar Decathlon China 2013,” Renew. Energy, vol. 81, pp. 136–149, 2015, doi: 10.1016/j.renene.2015.03.029.
Y. Lu, S. Wang, C. Yan, and K. Shan, “Impacts of renewable energy system design inputs on the performance robustness of net zero energy buildings,” Energy, vol. 93, pp. 1595–1606, 2015, doi: 10.1016/j.energy.2015.10.034.
J. M. Taylor, “Sustainable Building Practices: Legislative and Economic Incentives,” Manag. Innov. a Sustain. Built Environ. MISBE 2011 , no. June, 2011, [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid:20da66f7-8eb7-4900-bdd8-490ac3fbecbb/datastream/OBJ.
“Motivation and Expectation of Developers on Green Construction: A Conceptual View.” http://publications.waset.org/11588/motivation-and-expectation-of-developers-on-green-construction-a-conceptual-view (accessed Jul. 06, 2020).
O. A. Olubunmi, P. B. Xia, and M. Skitmore, “Green building incentives: A review,” Renewable and Sustainable Energy Reviews, vol. 59. Elsevier Ltd, pp. 1611–1621, Jun. 01, 2016, doi: 10.1016/j.rser.2016.01.028.
T. Gómez-Navarro and D. Ribó-Pérez, “Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia,” Renew. Sustain. Energy Rev., vol. 90, no. September 2016, pp. 131–141, 2018, doi: 10.1016/j.rser.2018.03.015.
“Biophilic Design: The Theory, Science and Practice of Bringing Buildings to Life - Stephen R. Kellert, Judith Heerwagen, Martin Mador - Google Libros.” https://books.google.com.co/books?hl=es&lr=&id=FyNer_nQrW4C&oi=fnd&pg=PT9&ots=y_j39jKPKP&sig=M9PnRWzRgtm8Vb04JLOhfwF-ZGM&redir_esc=y#v=onepage&q&f=false (accessed Jul. 06, 2020).
F. P. Chantrelle, H. Lahmidi, W. Keilholz, M. El Mankibi, and P. Michel, “Development of a multicriteria tool for optimizing the renovation of buildings,” Appl. Energy, vol. 88, no. 4, pp. 1386–1394, Apr. 2011, doi: 10.1016/j.apenergy.2010.10.002.
Q. Jin and M. Overend, “FACADE RENOVATION FOR A PUBLIC BUILDING BASED ON A WHOLE-LIFE VALUE APPROACH,” 2012.
Y. Lu, S. Wang, and K. Shan, “Design optimization and optimal control of grid-connected and standalone nearly/net zero energy buildings,” Applied Energy, vol. 155. Elsevier Ltd, pp. 463–477, Oct. 01, 2015, doi: 10.1016/j.apenergy.2015.06.007.
W. Wu, H. M. Skye, and P. A. Domanski, “Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings,” Appl. Energy, vol. 212, no. October 2017, pp. 577–591, 2018, doi: 10.1016/j.apenergy.2017.12.046.
F. Shariatzadeh, P. Mandal, and A. K. Srivastava, “Demand response for sustainable energy systems: A review, application and implementation strategy,” Renew. Sustain. Energy Rev., vol. 45, no. August 2016, pp. 343–350, 2015, doi: 10.1016/j.rser.2015.01.062.
A. Arango-Manrique, S. X. Carvajal-Quintero, and C. Younes-Velosa, “How to promote distributed resource supply in a colombian microgrid with economic mechanism?: System dynamics approach,” DYNA, vol. 82, no. 192, 2015, doi: 10.15446/dyna.v82n192.48564.
J. Byun, S. Park, B. Kang, I. Hong, and S. Park, “Design and implementation of an intelligent energy saving system based on standby power reduction for a future zero-energy home environment,” IEEE Trans. Consum. Electron., vol. 59, no. 3, pp. 507–514, Aug. 2013, doi: 10.1109/TCE.2013.6626231.
A. Mohamed, M. Hamdy, A. Hasan, and K. Sirén, “The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions,” Appl. Energy, vol. 152, pp. 94–108, Aug. 2015, doi: 10.1016/j.apenergy.2015.04.096.
H. Mirinejad, K. C. Welch, and L. Spicer, “A review of intelligent control techniques in HVAC systems,” 2012, doi: 10.1109/EnergyTech.2012.6304679.
K. McGlinn, B. Yuce, H. Wicaksono, S. Howell, and Y. Rezgui, “Usability evaluation of a web-based tool for supporting holistic building energy management,” Autom. Constr., vol. 84, pp. 154–165, Dec. 2017, doi: 10.1016/j.autcon.2017.08.033.
E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486–494, Apr. 2006, doi: 10.1109/TIE.2006.870658.
P. Odonkor and K. Lewis, “Adaptive Operation Decisions in Net Zero Building Clusters,” Aug. 2015, doi: 10.1115/detc2015-47290.
X. Li and J. Wen, “Net-zero energy building clusters emulator for energy planning and operation evaluation,” Comput. Environ. Urban Syst., vol. 62, pp. 168–181, Mar. 2017, doi: 10.1016/j.compenvurbsys.2016.09.007.
C. C. I. C40, “C40.” https://www.c40.org/press_releases/press-release-clinton-climate-initiativec40-hybrid-electric-bus-program-breaks-ground-in-latin-america (accessed Jun. 22, 2020).
“International Energy Agency’s Energy in Buildings and Communities Programme.” https://www.iea-ebc.org/ (accessed Jun. 22, 2020).
H. Erhorn-Kluttig, H. Erhorn, J. Weber, S. Wössner, and E. Budde, “EnEff:Stadt - Energiekonzept-Berater für Stadtquartiere,” Bauphysik, vol. 35, no. 3, pp. 172–180, Jun. 2013, doi: 10.1002/bapi.201310062.
A. Zhivov et al., “Net Zero Building Cluster Energy Systems Analysis for U.S. Army Installations.”
L. Martirano et al., “Demand Side Management in Microgrids for Load Control in Nearly Zero Energy Buildings,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 1769–1779, May 2017, doi: 10.1109/TIA.2017.2672918.
M. Mehrtash, F. Capitanescu, P. K. Heiselberg, T. Gibon, and A. Bertrand, “An Enhanced Optimal PV and Battery Sizing Model for Zero Energy Buildings Considering Environmental Impacts,” IEEE Trans. Ind. Appl., vol. 56, no. 6, pp. 6846–6856, Nov. 2020, doi: 10.1109/TIA.2020.3022742.
N. Min-Allah and S. Alrashed, “Smart campus—A sketch,” Sustain. Cities Soc., vol. 59, no. April, p. 102231, 2020, doi: 10.1016/j.scs.2020.102231.
S. Alrashed, “Key Performance Indicators for Smart Campus and Microgrid,” Sustain. Cities Soc., vol. 60, no. May, p. 102264, 2020, doi: 10.1016/j.scs.2020.102264.
Ş. Kılkış, C. Wang, F. Björk, and I. Martinac, “Cleaner energy scenarios for building clusters in campus areas based on the Rational Exergy Management Model,” J. Clean. Prod., vol. 155, pp. 72–82, 2017, doi: 10.1016/j.jclepro.2016.10.126.
D. Kolokotsa et al., “Development of a web based energy management system for University Campuses: The CAMP-IT platform,” Energy Build., vol. 123, pp. 119–135, 2016, doi: 10.1016/j.enbuild.2016.04.038.
F. D. Salim et al., “Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey,” Build. Environ., vol. 183, p. 106964, Oct. 2020, doi: 10.1016/J.BUILDENV.2020.106964.
T. F. Megahed, S. M. Abdelkader, and A. Zakaria, “Energy management in zero-energy building using neural network predictive control,” IEEE Internet Things J., vol. 6, no. 3, pp. 5336–5344, Jun. 2019, doi: 10.1109/JIOT.2019.2900558.
Z. Ma, H. Ren, and W. Lin, “A review of heating, ventilation and air conditioning technologies and innovations used in solar-powered net zero energy Solar Decathlon houses,” J. Clean. Prod., vol. 240, p. 118158, 2019, doi: 10.1016/j.jclepro.2019.118158.
M. Krarti, Integrated Design and Retrofit of Buildings. 2018.
J. Dadzie, G. Runeson, and G. Ding, “Determinants of sustainable upgrade for energy efficiency - The case of existing buildings in Australia,” Energy Procedia, vol. 153, pp. 284–289, 2018, doi: 10.1016/j.egypro.2018.10.002.
“Sustainable Renovation: Strategies for Commercial Building Systems and Envelope - Lisa Gelfand, Chris Duncan - Google Libros.” https://books.google.com.co/books?hl=es&lr=&id=b_PmZAzJecYC&oi=fnd&pg=PT6&ots=n8keQfc_zg&sig=CRJuMG4P2cCPEZJWur8UeMZlelA&redir_esc=y#v=onepage&q&f=false (accessed Jun. 22, 2020).
J. Laverge, M. Delghust, S. Van de Velde, T. De Brauwere, and A. Janssens, “Airtightness assessment of newly built single family houses in Belgium,” Build. Ductwork Air-tightness, 5th Int. Symp. Proc., 2010, Accessed: Jun. 22, 2020. [Online]. Available: http://hdl.handle.net/1854/LU-1141602.
R. E. D. Hamed, “Harmonization between architectural identity and energy efficiency in residential sector (case of North-West coast of Egypt),” Ain Shams Eng. J., vol. 9, no. 4, pp. 2701–2708, 2018, doi: 10.1016/j.asej.2017.09.001.
C. Outline, Energy Efficiency in Building Renovation. 2019.