Transient Analysis of Grounding Electrodes in Multilayer Soils Using Method of Moments

Authors

Keywords:

lightning, grounding electrodes, method of moments, Electromagnetic transients

Abstract

Grounding electrodes are expected to provide a low-impedance  path  for  faults  and  lightning  transient  currents  and  protect  the  safety  of  electrical  equipment  and  nearby  people against  dangerous  induced  potentials.  In  this  context,  a  precise model  of  the  grounding  electrodes  is  needed  to  represent  a  certain   electrode   arrangement   buried   in   stratified   soil.   This paper computes the grounding impedances of different grounding systems   buried   in   three   different   soil   configurations   (homogeneous,  2-layer  and  3-layer  soil)  modeled  by  its  frequency-dependent  electrical  parameters.  A  simulation  model  using  a commercial full-wave electromagnetic software FEKO to compute the  grounding  impedances  is  presented.  Method  of  Moments(MoM),   a   frequency-domain   numerical   method,   is   employed to  compute  the  grounding  impedance  in  a  frequency  range  of100  Hz  to  5  MHz.  Next,  the  developed  ground  potential  rise(GPR)  generated  by  two  types  of  lightning  currents  (first  and subsequent return strokes) injected into these grounding systems is computed. Time-domain GPR of each grounding system is also determined  using  the  Vector  Fitting  (VF)  technique  combined with  the  ATP-software.  Results  show  that  GPR  waveform  is reduced   when   frequency-dependent   soils   are   employed.   This reduction  is  more  pronounced  in  homogeneous  and  in  2-layersoils  of  high  and  moderated  resistivity  whereas  the  3-layer  soil has  a  minor  impact  due  to  the  lower  soil  resistivity

Downloads

Download data is not yet available.

Author Biographies

Anderson Ricardo Justo de Araújo, State University Campinas (UNICAMP)

Anderson Ricardo Justo de Araújo received the B. Sc., M. Sc. and Ph.D. degrees in Electrical Engineering from the São Paulo State University (UNESP), Brazil, in 2012 and 2014 and 2018, respectively. His current interests include transmission tower and line modeling for electromagnetic transient simulations in power systems.

Jaimis Sajid Leon Colqui, São Paulo State University (UNESP)

received the B.Sc. degree in Electrical Engineering in 2014 from National University Engineering (UNI), Peru and his M. Sc. degree from Sao Paulo State University (UNESP), Campus of Ilha Solteira, Brazil, in 2017. Currently, he is a doctorate student in Electrical Engineering at the Sao Paulo State University (UNESP), in Ilha Solteira, Brazil. His research areas include transmission tower and line modeling for electromagnetic transient simulations in power systems.

Walter Luiz Manzi de Azevedo, State University of Campinas

received the B.Sc. degree in Electrical Engineering from the State University of Campinas (UNICAMP), Brazil in 2021. Currently is a Master's student at the State University of Campinas (UNICAMP), Brazil. His interests are grounding systems modeling, electromagnetic transients in power systems, and numerical methods.

Sérgio Kurokawa, São Paulo State University (UNESP)

received B. Sc degree in Electrical Engineering from Sao Paulo State University (UNESP) in 1990, M. Sc from Federal University of Uberlandia (UFU) in 1994 and Ph.D. from University of Campinas (Unicamp) in 2003. Since 1994 he has been working as a professor and researcher at UNESP, Campus of Ilha Solteira. His current interests are electromagnetic transients in power systems and transmission line modeling

Jose Pissolato Filho, State University of Campinas

He was born in Campinas, Sao Paulo, Brazil. He received the Ph. D. degree in electrical engineering from Universit\'e Paul Sabatier, France, 1986. Since 1979, he has been with the Department of Energy and
Systems of UNICAMP. His main research interests are in high voltage engineering, electromagnetic transients, and electromagnetic compatibility.

Behzad Kordi, University of Manitoba

received the B.Sc., M.Sc., and Ph.D. degrees all in electrical engineering from Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran, in 1992, 1995, and 2000, respectively. In 2002, he joined the Electrical and Computer Engineering Department, University of Manitoba, Canada, where he is currently a professor. His research interests include high voltage engineering, electromagnetic compatibility, and simulation models of transmission lines.

References

L. Grcev, “Modeling of grounding electrodes under lightning currents,”

IEEE Transactions on Electromagnetic Compatibility, vol. 51, no. 3

PART 1, pp. 559–571, 2009.

A. De Conti and R. Alipio, “Single-port equivalent circuit representation

of grounding systems based on impedance fitting,” IEEE Transactions

on Electromagnetic Compatibility, vol. 61, no. 5, pp. 1683–1685, 2019.

R. S. Al´ıpio, M. M. Afonso, T. A. S. d. Oliveira, and M. A. d. O.

Schroeder, “Modelagem de aterramentos el´etricos para fenˆomenos de

alta frequˆencia e comparac¸ ˜ao com resultados experimentais,” Sba:

Controle & Automac¸ ˜ao Sociedade Brasileira de Automatica, vol. 22,

no. 1, pp. 89–102, 2011.

B. Salarieh, H. J. De Silva, and B. Kordi, “Electromagnetic

transient modeling of grounding electrodes buried in frequency

dependent soil with variable water content,” Electric Power

Systems Research, vol. 189, p. 106595, 2020. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0378779620303990

R. Alipio and S. Visacro, “Frequency dependence of soil parameters:

Effect on the lightning response of grounding electrodes,” IEEE Transactions

on Electromagnetic Compatibility, vol. 55, no. 1, pp. 132–139, 2013.

Z. G. Datsios and P. N. Mikropoulos, “Characterization of the frequency

dependence of the electrical properties of sandy soil with variable grain

size and water content,” IEEE Transactions on Dielectrics and Electrical

Insulation, vol. 26, no. 3, pp. 904–912, 2019.

A. E. Ruehli, G. Antonini, and L. Jiang, Circuit-oriented electromagnetic

modeling using the PEEC techniques. Wiley Online Library, 2017.

F. Pereira, M. Afonso, M. Schroeder, and T. Oliveira, “Espalhamento

eletromagn´etico: An´alise de estruturas condutoras via m´etodo de momentos,”

CEP, vol. 30510, p. 000.

Altair, User Manual for FEKO 2019. Altair, 2019.

R. F. Harrington, Field computation by moment methods. Wiley-IEEE Press, 1993.

B. Gustavsen and A. Semlyen, “Rational approximation of frequency

domain responses by vector fitting,” IEEE Transactions on Power

Delivery, vol. 14, no. 3, pp. 1052–1061, 1999.

E. Ba˜nuelos-Cabral, J. Guti´errez-Robles, J. Garc´ıa-S´anchez, J. Sotelo-

Casta˜n´on, and V. Galv´an-S´anchez, “Accuracy enhancement of the jmarti

model by using real poles through vector fitting,” Electrical Engineering,

vol. 101, no. 2, pp. 635–646, 2019.

G. Antonini, “Spice equivalent circuits of frequency-domain responses,”

IEEE Transactions on Electromagnetic Compatibility, vol. 45, no. 3, pp.

–512, 2003.

F. H. Silveira, A. De Conti, and S. Visacro, “Lightning overvoltage

due to first strokes considering a realistic current representation,” IEEE

Transactions on Electromagnetic Compatibility, vol. 52, no. 4, pp. 929–

, 2010.

L. D. Grcev, A. Kuhar, V. Arnautovski-Toseva, and B. Markovski,

“Evaluation of high-frequency circuit models for horizontal and vertical

grounding electrodes,” IEEE Transactions on Power Delivery, vol. 33,

no. 6, pp. 3065–3074, 2018.

L. Grcev and M. Heimbach, “Frequency-dependent and transient characteristics

of substation grounding systems,” IEEE Transactions on Power

Delivery, vol. 12, no. 1, pp. 172–178, 1997.

B. Salarieh, J. De Silva, and B. Kordi, “High frequency response of

grounding electrodes: effect of soil dielectric constant,” IET Generation,

Transmission & Distribution, 2020.

Published

2021-08-17

How to Cite

de Araújo, A. R. J. ., Colqui, J. S. L., Azevedo, W. L. M. de, Kurokawa, S. ., Filho, J. P., & Kordi, B. . (2021). Transient Analysis of Grounding Electrodes in Multilayer Soils Using Method of Moments. IEEE Latin America Transactions, 20(2), 269–275. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/5603