Localized Capture of Bacteria in an Interdigitated Electrode Impedance Biosensor



biosensor, impedance spectroscopy, microchannel, interdigitated microelectrodes


This work presents the design of a biosensor for detection of Escherichia coli bacteria. The biosensor consists of an interdigitated electrodes array to detect the impedance changes, as a function of frequency, when bacteria is captured in different areas. The design was first simulated with COMSOL Multiphysics® software to obtain the impedance magnitude and phase curves, after that the transfer function for every case was established with an algorithm in MATLAB® software to propose an equivalent circuit in order to determine the electrical components that dominate the impedance response in every frequency range of the curve. Results show that impedance changes in the biosensor are mainly due to the bacteria captured between interdigitated electrodes, whereas the bacteria captured only over interdigitated electrodes produce a very small change in the impedance. In order to confine the bacteria between electrodes, a microchannel is added, increasing the biosensor sensitivity.


Download data is not yet available.

Author Biographies

Alvaro Zazueta-Gambino, Instituto Nacional de Astrofísica, Óptica y Electrónica

Alvaro Zazueta-Gambino recibió el grado de Maestro en ciencias en Electrónica por parte del Instituto Tecnológico de Mexicali, Baja California, México en 2011. Actualmente se encuentra cursando un Doctorado en Electrónica en el Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE). Su trabajo de tesis se enfoca en la fabricación de un microsensor para la detección de bacterias.

Claudia Reyes-Betanzo, Instituto Nacional de Astrofísica, Óptica y Electrónica

Claudia Reyes-Betanzo. Obtuvo su grado de Maestría en Electrónica en la Universidad Autónoma de Puebla, México en 1997, y el Doctorado en la Universidad Estatal de Campinas, Brasil en 2003. Ella es actualmente investigadora en el Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) en Puebla, México. Sus áreas de interés incluyen biosensores para detección de bacterias, diseño y fabricación de microbombas y sistemas microfluídicos.

Víctor Manuel Jiménez-Fernández, Universidad Veracruzana

Víctor Manuel Jimenez-Fernandez recibió el grado de Doctor en ciencias en Electrónica por parte del Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) en Puebla, México en 2006. De 2006 a 2007 fue investigador invitado en el Departamento de Ingeniería Eléctrica y de Computadoras de la Universidad Nacional del Suren Bahía Blanca, Argentina. Desde febrero de 2009 se ha desempeñado como investigador en la Universidad Veracruzana, en Veracruz, México. Sus líneas de investigación incluyen Análisis y Diseño de Circuitos Asistido por Computadora, Modelado de Sistemas No Lineales y Computación Científica.


F. McEachern,E. Harvey, and G. Merle, “Emerging Technologies for the Electrochemical Detection of Bacteria,” Biotechnol. J., vol. 15, no. 9, pp. 1-15, May2020.

J. Leva-Bueno, S. A. Peyman, and P. A. Millner, “A review on impedimetric immunosensors for pathogen and biomarker detection”, Med. Microbiol. Immunol., vol. 209, pp. 343-362, Mar. 2020.

A. L. Furst, and M. B. Francis, “Impedance-Based Detection of Bacteria,” Chem. Rev., vol. 119, no. 1, pp. 700-726, Dec. 2018.

R. S. Burlage, and J. Tillmann, “Biosensors of bacterial cells”, J. Microbiol. Methods, vol. 138, pp. 2-11, July 2017.

A. Ahmed, J. V. Rushworth, N. A. Hirst, and P. A. Millner, “Biosensors for Whole-Cell Bacterial Detection,” Clin. Microbiol., vol. 27, no. 3, pp. 631-646, June 2014.

S. Brosel-Oliu, N. Abramova, N. Uria, A. Bratov, “Impedimetric transducers based on interdigitated electrode arrays for bacterial detection – A review,” Anal. Chim. Acta, vol. 1088, no. 11, pp. 1-19, Dec. 2019.

M. Grossi, and B. Ricco, “Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review”, J. Sens. Sens. Syst., vol. 6, no. 2, pp. 303-325, July 2017.

E. P. Randviir, and C. E. Banks, “Electrochemical Impedance Spectroscopy: An Overview of Bioanalytical Applications,” Anal. Methods, vol. 5, no. 5, pp. 1098-1115, Jan. 2013.

B.Pejcic, R. De-Marco, “Impedance spectroscopy: Over 35 years of electrochemical sensor optimization,” Electrochim. Acta, vol. 51, no. 28, pp. 6217-6229, Sep. 2006.

F. Lisdat, and D. Schäfer, “The use of electrochemical impedance spectroscopy for biosensing,” Anal. Bioanal. Chem.,vol. 391, pp. 1555-1567, Apr. 2008.

O. Pänke, T. Balkenhohl, J. Kafka, D. Schäfer, and F. Lisdat,“Impedance spectroscopy and biosensing,”Adv.Biochem. Eng.Biotechnol., vol. 109, pp. 195-237, Nov. 2007.

Z. Altintas, M. Akgun, G. Kokturk, and Y. Uludag, “A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection,” Biosens. Bioelectron., vol. 100, pp. 541-548, Feb. 2018.

L. Li, Z. Chen, S. Wang, X. Jin, L. Yang, G. Liu, and J. Zhao, “Highly selective detection of Escherichia coli O157:H7 based on micro-gapped interdigitated electrode arrays,” Biotechnol. Biotechnol. Equip., vol. 31, no. 5, pp. 1070-1078, May 2017.

M. Xu, R. Wang, and Y. Li, “An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes,” Analyst, vol. 141, no. 18, pp. 5441-5449, June 2016.

S. Wang, C. Sun, Q. Hu, S. Li, C. Wang, P. Wang, and L. Zhou, “A homogeneous magnetic bead-based impedance immunosensor for highly sensitive detection of Escherichia coli O157:H7,” Biochem. Eng. J., vol. 156, pp. 1-8, Jan. 2020.

Z. Yang, X. Sun, T. Wang, C. Lei, Y. Liu, Y. Zhou, and J. Lei, “A giant magnetoimpedance-based biosensor for sensitive detection of Escherichia coli O157:H7,” Biomed. Microdevices, vol. 17, no. 5, pp. 1-7, Jan. 2015.

M. Varshney, and Y. Li, “Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7 in food samples,” Biosens. Bioelectron., vol. 22, no. 11, pp. 2408-2414, May 2007.

R. D. A. A. Rajapaksha, U. Hashim, M. N. Afnan Uda, and C. A. N. Fernando, “Target ssDNA detection of E.coli O157:H7 through electrical based DNA biosensor,” Microsyst. Technol., vol. 23, pp. 5771-5780, July 2017.

S. Nadzirah, N. Azizah, U. Hashim, S. C. B. Gopinath, and Kashif, “Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7”, Plos One, vol. 10, no. 10, pp. 1-15, Oct. 2015.

A. G. Torres, M. M. Amaral, L. Bentancor, L. Galli, J. Goldstein, A. Krüger, and M. Rojas-Lopez, “Recent Advances in Shiga ToxinProducing Escherichia coli Research in Latin America,” Microorganisms, vol. 6, no. 4, pp. 1-19, Sep. 2018.

J. T. Poolman, A. S. Anderson, “Escherichia coli and Staphylococcus aureus: leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations,” Expert Rev. Vaccines, vol. 17, no. 7, pp. 607-618, June 2018.

M. Ibrahim, 1. Claudel, D. Kourtiche and M. Nadi, "Geometric parameters optimization of planar interdigitated electrodes for bioimpedance spectroscopy," J. Electr. Bioimp., vol. 4, pp. 13-22, March 2013.

N. Saito, T. Yamaguchi and I. Nakaaki, “Comparative study of properties between a-GeC:H and a-SiC:H films prepared by radio-frequency reactive sputtering in methane,” J. Appl. Phys., vol. 78, no. 6, pp. 3949-3954, Sep. 1995.

K. Asami, T. Hanai and N. Koizumi, “Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization,” Biophys J., vol. 31, no. 2, pp. 215-228, Aug. 1980.

D. Esteban-Ferrer, M. A. Edwards, L. Fumagalli, A. Juárez, and G. Gomila, “Electric polarization properties of single bacteria measured with electrostatic force microscopy,” ACS Nano., vol. 10, no. 8, pp. 9843-9849, Sep. 2014.

C. T. Kelley, “Global Convergence,” in Iterative Methods for Optimizations, Philadelphia, PA, USA: SIAM, 1987, pp. 39-68.



How to Cite

Zazueta-Gambino, A., Reyes-Betanzo, C., & Jiménez-Fernández, V. M. (2021). Localized Capture of Bacteria in an Interdigitated Electrode Impedance Biosensor. IEEE Latin America Transactions, 20(3), 402–408. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/5424