Localized Capture of Bacteria in an Interdigitated Electrode Impedance Biosensor
Keywords:
biosensor, impedance spectroscopy, microchannel, interdigitated microelectrodesAbstract
This work presents the design of a biosensor for detection of Escherichia coli bacteria. The biosensor consists of an interdigitated electrodes array to detect the impedance changes, as a function of frequency, when bacteria is captured in different areas. The design was first simulated with COMSOL Multiphysics® software to obtain the impedance magnitude and phase curves, after that the transfer function for every case was established with an algorithm in MATLAB® software to propose an equivalent circuit in order to determine the electrical components that dominate the impedance response in every frequency range of the curve. Results show that impedance changes in the biosensor are mainly due to the bacteria captured between interdigitated electrodes, whereas the bacteria captured only over interdigitated electrodes produce a very small change in the impedance. In order to confine the bacteria between electrodes, a microchannel is added, increasing the biosensor sensitivity.
Downloads
References
F. McEachern,E. Harvey, and G. Merle, “Emerging Technologies for the Electrochemical Detection of Bacteria,” Biotechnol. J., vol. 15, no. 9, pp. 1-15, May2020.
J. Leva-Bueno, S. A. Peyman, and P. A. Millner, “A review on impedimetric immunosensors for pathogen and biomarker detection”, Med. Microbiol. Immunol., vol. 209, pp. 343-362, Mar. 2020.
A. L. Furst, and M. B. Francis, “Impedance-Based Detection of Bacteria,” Chem. Rev., vol. 119, no. 1, pp. 700-726, Dec. 2018.
R. S. Burlage, and J. Tillmann, “Biosensors of bacterial cells”, J. Microbiol. Methods, vol. 138, pp. 2-11, July 2017.
A. Ahmed, J. V. Rushworth, N. A. Hirst, and P. A. Millner, “Biosensors for Whole-Cell Bacterial Detection,” Clin. Microbiol., vol. 27, no. 3, pp. 631-646, June 2014.
S. Brosel-Oliu, N. Abramova, N. Uria, A. Bratov, “Impedimetric transducers based on interdigitated electrode arrays for bacterial detection – A review,” Anal. Chim. Acta, vol. 1088, no. 11, pp. 1-19, Dec. 2019.
M. Grossi, and B. Ricco, “Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review”, J. Sens. Sens. Syst., vol. 6, no. 2, pp. 303-325, July 2017.
E. P. Randviir, and C. E. Banks, “Electrochemical Impedance Spectroscopy: An Overview of Bioanalytical Applications,” Anal. Methods, vol. 5, no. 5, pp. 1098-1115, Jan. 2013.
B.Pejcic, R. De-Marco, “Impedance spectroscopy: Over 35 years of electrochemical sensor optimization,” Electrochim. Acta, vol. 51, no. 28, pp. 6217-6229, Sep. 2006.
F. Lisdat, and D. Schäfer, “The use of electrochemical impedance spectroscopy for biosensing,” Anal. Bioanal. Chem.,vol. 391, pp. 1555-1567, Apr. 2008.
O. Pänke, T. Balkenhohl, J. Kafka, D. Schäfer, and F. Lisdat,“Impedance spectroscopy and biosensing,”Adv.Biochem. Eng.Biotechnol., vol. 109, pp. 195-237, Nov. 2007.
Z. Altintas, M. Akgun, G. Kokturk, and Y. Uludag, “A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection,” Biosens. Bioelectron., vol. 100, pp. 541-548, Feb. 2018.
L. Li, Z. Chen, S. Wang, X. Jin, L. Yang, G. Liu, and J. Zhao, “Highly selective detection of Escherichia coli O157:H7 based on micro-gapped interdigitated electrode arrays,” Biotechnol. Biotechnol. Equip., vol. 31, no. 5, pp. 1070-1078, May 2017.
M. Xu, R. Wang, and Y. Li, “An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes,” Analyst, vol. 141, no. 18, pp. 5441-5449, June 2016.
S. Wang, C. Sun, Q. Hu, S. Li, C. Wang, P. Wang, and L. Zhou, “A homogeneous magnetic bead-based impedance immunosensor for highly sensitive detection of Escherichia coli O157:H7,” Biochem. Eng. J., vol. 156, pp. 1-8, Jan. 2020.
Z. Yang, X. Sun, T. Wang, C. Lei, Y. Liu, Y. Zhou, and J. Lei, “A giant magnetoimpedance-based biosensor for sensitive detection of Escherichia coli O157:H7,” Biomed. Microdevices, vol. 17, no. 5, pp. 1-7, Jan. 2015.
M. Varshney, and Y. Li, “Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7 in food samples,” Biosens. Bioelectron., vol. 22, no. 11, pp. 2408-2414, May 2007.
R. D. A. A. Rajapaksha, U. Hashim, M. N. Afnan Uda, and C. A. N. Fernando, “Target ssDNA detection of E.coli O157:H7 through electrical based DNA biosensor,” Microsyst. Technol., vol. 23, pp. 5771-5780, July 2017.
S. Nadzirah, N. Azizah, U. Hashim, S. C. B. Gopinath, and Kashif, “Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7”, Plos One, vol. 10, no. 10, pp. 1-15, Oct. 2015.
A. G. Torres, M. M. Amaral, L. Bentancor, L. Galli, J. Goldstein, A. Krüger, and M. Rojas-Lopez, “Recent Advances in Shiga ToxinProducing Escherichia coli Research in Latin America,” Microorganisms, vol. 6, no. 4, pp. 1-19, Sep. 2018.
J. T. Poolman, A. S. Anderson, “Escherichia coli and Staphylococcus aureus: leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations,” Expert Rev. Vaccines, vol. 17, no. 7, pp. 607-618, June 2018.
M. Ibrahim, 1. Claudel, D. Kourtiche and M. Nadi, "Geometric parameters optimization of planar interdigitated electrodes for bioimpedance spectroscopy," J. Electr. Bioimp., vol. 4, pp. 13-22, March 2013.
N. Saito, T. Yamaguchi and I. Nakaaki, “Comparative study of properties between a-GeC:H and a-SiC:H films prepared by radio-frequency reactive sputtering in methane,” J. Appl. Phys., vol. 78, no. 6, pp. 3949-3954, Sep. 1995.
K. Asami, T. Hanai and N. Koizumi, “Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization,” Biophys J., vol. 31, no. 2, pp. 215-228, Aug. 1980.
D. Esteban-Ferrer, M. A. Edwards, L. Fumagalli, A. Juárez, and G. Gomila, “Electric polarization properties of single bacteria measured with electrostatic force microscopy,” ACS Nano., vol. 10, no. 8, pp. 9843-9849, Sep. 2014.
C. T. Kelley, “Global Convergence,” in Iterative Methods for Optimizations, Philadelphia, PA, USA: SIAM, 1987, pp. 39-68.