Stochastic Preventive Security-Constrained Economic Dispatch

Authors

Keywords:

Economic Dispatch, Optimal Power Flow, Stochastic Programming, PTDF

Abstract

In electrical power systems, the natural load randomness requires modeling the uncertainty adequately for determining optimal operation decisions. Besides security system actions and reserve management, stochastic approaches to solve operation problems have been widely considered as an approximation for mitigating demand fluctuations and renewable energy variability. This study proposes a scenario-based Stochastic Preventive Security-Constrained Economic Dispatch formulation using power transfer distribution factors to model the transmission network considering N–k line outages and transmission losses. Extensive computational simulations have conducted with different electrical power systems to demonstrate improvements in the power system operation obtained by the proposed stochastic formulation.

Downloads

Download data is not yet available.

Author Biographies

José Mariano Paniagua-Contreras, Tecnologico Nacional de Mexico - Campus Morelia.

José Mariano Paniagua Contreras recibió el grado de Ing. Electricista en 2019 por el Tecnológico Nacional de México/I.T. Morelia (ITM). Actualmente realiza sus estudios de Maestría en Ciencias en Ingeniería Eléctrica en el Programa de Graduados e Investigación en Ingeniería Eléctrica (PGIIE) ITM. Sus principales áreas de interés son la operación y control de los sistemas eléctricos de potencia y sistemas de distribución y mercados de electricidad.

Guillermo Gutiérrez, Tecnologico Nacional de Mexico - Campus Morelia

G. Gutiérrez Alcaraz (M’04, SM’11) es miembro del PGIIE-ITM desde 1996. Sus principales áreas de interés son la operación y control de los sistemas eléctricos y mercados de electricidad.

José Horacio Tovar, Tecnologico Nacional de Mexico - Campus Morelia.

José Horacio Tovar Hernández realizó sus estudios de licenciatura en el Tecnológico de Morelia, obteniendo el grado de Ingeniero Electricista en 1984. Posteriormente, realizó sus estudios de Maestría y Doctorado en Ingeniería Eléctrica en la Sección de Estudios de Postgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica del Instituto Politécnico Nacional (SEPI-ESIME-IPN), logrando el grado de Maestro en Ciencias en 1989 y de Doctor en 1995. Actualmente, es profesor del PGIIE-ITM.

Victor Hinojosa-Mateus , Universidad Tecnica Federico Santa Maria, Chile.

V. Hinojosa-Mateus (M’08) nació en Quito, Ecuador, en 1975. Recibió el título de Ingeniero Eléctrico de la Escuela Politécnica Nacional, Ecuador, en 2000, y de Doctor en Ingeniería Eléctrica de la Universidad Nacional de San Juan, Argentina, en 2007. Actualmente es profesor en el Departamento de Ingeniería Eléctrica de la Universidad Técnica Federico Santa María, Chile. Sus áreas de especialización están relacionadas con la operación y planificación de sistemas eléctricos de potencia.

References

Mehrtash, M., Raoofat, M., Mohammadi, M., and H. Zareipour, “Fast stochastic security‐constrained unit commitment using point estimation method,” International Transactions on Electrical Energy Systems, vol. 26, no. 3, pp. 671-688, 2016.

D. Bienstock, M. Chertkov, and S. Harnett, “Chance-constrained optimal power flow: Risk-aware network control under uncertainty,” Siam Review, vol. 56, no. 3, pp. 461-495.

I. G. Marneris, P. N. Biskas, and A. G. Bakirtzis, “Stochastic and deterministic unit commitment considering uncertainty and variability reserves for high renewable integration,” Energies, 2017, 10, 140.

L. Roald, G. Andersson, S. Misra, M. Chertkov, and S. Backhaus, “Optimal power flow with wind power control and limited expected risk of overloads,” in Proc. 2016 Power Systems Computation Conference (PSCC), Genoa, Italy, 2016, pp. 1–7.

O. Alsac and B. Stott, “Optimal load flow with steady-state security,” IEEE Trans. Power Apparatus and Systems, vol. PAS-93, no. 3, pp. 745–751, May 1974.

Federal Energy Regulatory Commission, “Security constrained economic dispatch: definition, practices, issues and recommendations,” Tech. Rep., 2006.

L. S. Vargas, V. H. Quintana, and A. Vannelli, “A tutorial description of an interior point method and its applications to security-constrained economic dispatch,” IEEE Trans. Power Systems, vol. 8, no. 3, pp. 1315–1324, Aug. 1993.

Z.-L. Gaing, and R. F. Chang, “Security-Constrained economic scheduling of generation considering generator constraints,” in Proc. 2006 International Conference on Power System Technology, Chongqing, China, 2006, pp. 1–7.

Victor H. Hinojosa, “Comparing corrective and preventive security-constrained DCOPF problems using linear shift-factors,” Energies 2020, 13, 516.

A. Monticelli, M. V. F. Pereira, and S. Granville, “Security-constrained optimal power flow with post-contingency corrective rescheduling,” IEEE Trans. Power Systems, vol. 2, no. 1, pp. 175–180, Feb. 1987.

Victor H. Hinojosa and Francisco Gonzalez-Longatt, “Preventive security-constrained DCOPF formulation using power transmission distribution factors and line outage distribution factors,” Energies 2018, 11, 1497.

A. Pitto, D. Cirio, and E. Ciapessoni, “Probabilistic security-constrained preventive redispatching in presence of correlated uncertainties,” in Proc. 2020 AEIT International Annual Conference (AEIT), Catania, Italy, Italy, 2020, pp. 1–6.

H. Li, Z. Zhang, X. Yin, and B. Zhang “Preventive security-constrained optimal power flow with probabilistic guarantees,” Energies 2020, 13, 2344.

J. R. Birge and F. Louveaux, “Introduction to stochastic programming.” Springer Science & Business Media.

F. Bouffard, F. D. Galiana, and A. J. Conejo, “Market-clearing with stochastic security-part II: case studies,” IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1827–1835, Nov. 2005.

L. Wu, M. Shahidehpour, and Z. Li “Comparison of scenario-based and interval optimization approaches to stochastic SCUC,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 913-921, May 2012.

O. Mégel, J. L. Mathieu, and G. Andersson, “Hybrid stochastic-deterministic multiperiod DC optimal power flow,” IEEE Trans. Power Syst., 32(5), 3934-3945.

O. Mégel, Storage in Power Systems: Frequency Control, Scheduling of Multiple Applications, and Computational Complexity (Doctoral dissertation, ETH Zurich), 2017.

M. Wafaa and L.-A. Dessaint, “Multi-objective stochastic optimal power flow considering voltage stability and demand response with significant wind penetration,” IET Generation, Transmission & Distribution, vol. 11, no. 14, pp. 3499–3509, 2017.

M. Rowe, T. Yunusov, S. Haben, W. Holderbaum, and B. Potter, “The real-time optimisation of DNO owned storage devices on the LV network for peak reduction,” Energies, 7(6), 3537-3560.

Hui Zhang, Vijay Vittal, Gerald Thomas Heydt, and Jaime Quintero, “A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1125-1133, May 2012.

https://www.cenace.gob.mx/Paginas/SIM/Reportes/PronosticosDemanda.aspx

https://www.fico.com/es/products/fico-xpress-optimization

Fangxing Li, Rui Bo, “Small Test Systems for Power System Economic Studies,” 2010 IEEE PES General Meeting, pp. 1-4

Case IEEE 300.” [Online]. Available: https://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/case300.html.

Published

2021-10-14

How to Cite

Paniagua-Contreras, J. M., Gutiérrez, G., Tovar, J. H., & Hinojosa-Mateus , V. (2021). Stochastic Preventive Security-Constrained Economic Dispatch. IEEE Latin America Transactions, 20(1), 171–179. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/5353