Demonstration of a Sub-Pixel Outdoor Optical Camera Communication Link

Authors

Keywords:

Optical Camera Communication, Outdoor Optical Communication, Visible Light Communication

Abstract

Optical Camera Communication (OCC) is an Optical Wireless Communication (OWC) technology that relies on general-purpose cameras to perform not only image-related tasks but also to receive data from optical sources. In general terms, OCC has been extensively studied in indoor scenarios and can be a competent and cost-effective alternative solution for wireless data transmission in Smart Cities for medium to long links up to hundreds of meters. In this paper, the feasibility of establishing an outdoor sub-pixel communication link is demonstrated. In this experiment, single 5 mm white LED transmitters located at distances of 90 and 130 m send simultaneous optical codes to a receiver based on a commercial camera, achieving a signal-to noise ratio of 20 dB and 13 dB, respectively. This work shows that although the geometrical projection within the transmitter’s image is less than the pixel area, it is still possible to establish an effective communication link, with 8 bps per transmitter. At 130 m, the best performance was an error rate of 7;2 · 10-3, and for 90 m, no errors were detected.

Downloads

Download data is not yet available.

Author Biographies

Vicente Matus, IDeTIC-ULPGC

Vicente Matus obtuvo el grado de Ingeniero Eléctrico en 2018 en la Universidad de Chile. En la actualidad es un becario de doctorado en el proyecto Marie Skłodowska-Curie Innovative Training Network VisIoN (G.A. 764461) en Instituto Universitario IDeTIC de la ULPGC, España. Su campo de investigación se enfoca en las comunicaciones ópticas mediante cámaras y sus aplicaciones en redes de sensores

Victor Guerra, IDeTIC-ULPGC

Victor Guerra MEng. en Telecomunicaciones (ULPGC, 2010), MSc. en Sistemas Inteligentes (ULPGC, 2012) y PhD (ULPGC, 2016). Premio Extraordinario de Doctorado en la Rama de Ingeniería y Arquitectura (ULPGC, 2018). Investigador de la División de Fotónica y Comunicaciones del Instituto
Universitario IDeTIC desde 2008. Ha participado en 4 proyectos H2020, 3 proyectos nacionales y 2
de carácter regional, además de en varios contratos con empresas privadas de alta relevancia. Ha publicado más de 50 artículos en revistas indexadas y comunicaciones en congresos. Sus intereses actuales de investigación son las comunicaciones ópticas inalámbricas (atmosféricas y submarinas), las
comunicaciones ópticas por cámara y las aplicaciones de inteligencia artificial.

Cristo Jurado-Verdu, IDeTIC-ULPGC

Cristo Jurado-Verdu obtuvo el máster en Ingeniería en Tecnologías de Telecomunicación en la ULPGC
en 2019, España. Actualmente, está realizando su doctorado en comunicaciones ópticas inalámbricas
en el Instituto Universitario IDeTIC de la ULPGC. Su investigación está enfocada al desarrollo de potenciales aplicaciones de las comunicaciones ópticas basadas en cámara. Sus intereses están relacionados con la optimización de firmware embebido, la automatización industrial, y la implementación de aplicaciones de visión artificial.

Jose Rabadan, IDeTIC-ULPGC

Jose Rabadan es Ingeniero de Telecomunicación (1995) y Doctor (2000) por la Universidad de Las Palmas de Gran Canaria, donde actualmente es profesor e investigador adscrito al Instituto Universitario IDeTIC. Sus intereses de investigación se enmarcan en el campo de las comunicaciones ópticas inalámbricas, en los sistemas de comunicación por luz visible y comunicaciones ópticas con cámaras, donde trabaja en esquemas de codificación y modulación de alto rendimiento y en técnicas de estimación de canales. Ha sido investigador en diferentes proyectos nacionales e internacionales financiados por administraciones y empresas nacionales y europeas. También es autor de 3 capítulos de libros, más de 30 artículos en revistas internacionales y más de 90 ponencias en congresos.

Rafael Perez-Jimenez, IDeTIC-ULPGC

Rafael Perez-Jimenez Madrid 1965. Eng. y MSc. (UPM, 1991), PhD (ULPGC 1995 y ULL en 2020),
catedrático en la ULPGC desde 2003, Director del Instituto Universitario IDeTIC de la ULPGC entre
2008 y 2020. Ha participado en 9 proyectos de investigación internacionales, más de 20 proyectos
nacionales y una veintena de contratos relevantes con empresas y administraciones. Ha publicado 4
libros docentes, 5 capítulos de libro y más de 250 artículos, comunicaciones y ponencias en congresos
internacionales. Su área de especialización corresponde al desarrollo de sistemas de comunicaciones ópticas para redes de sensores y enlaces de media/baja velocidad, y a la caracterización de canales
ópticos en interiores y en sistemas móviles. Actualmente es coordinador dentro del área de Tecnología de la Información y Comunicaciones de la Agencia Estatal de Investigación de España.

References

IEEE Standard Association, “IEEE standard for local and metropolitan area networks-part 15.7: short-range wireless optical communication using visible light,” IEEE: Piscataway, NZ, USA, pp. 1–309, 2011.

N. Saeed, S. Guo, K.-H. Park, T. Y. Al-Naffouri, and M.-S. Alouini, “Optical camera communications: Survey, use cases, challenges, and future trends,” Physical Communication, vol. 37, p. 100900, 2019.

E. Eso, S. Teli, N. B. Hassan, S. Vitek, Z. Ghassemlooy, and S. Zvanovec, “400 m rolling-shutter-based optical camera communications link,” Opt. Lett., vol. 45, pp. 1059–1062, Feb 2020.

M. Karbalayghareh, F. Miramirkhani, H. B. Eldeeb, R. C. Kizilirmak, S. M. Sait, and M. Uysal, “Channel modelling and performance limits of vehicular visible light communication systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 6891–6901, 2020.

P. Chavez-Burbano, V. Guerra, J. Rabadan, and R. Perez-Jimenez, “Optical camera communication for smart cities,” in 2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops), pp. 1–4, 2017.

Y. H. Kim, W. A. Cahyadi, and Y. H. Chung, “Experimental demonstration of vlc-based vehicle-to-vehicle communications under fog conditions,” IEEE Photonics Journal, vol. 7, no. 6, pp. 1–9, 2015.

V. Matus, V. Guerra, C. Jurado-Verdu, S. Teli, S. Zvanovec, J. Rabadan, and R. Perez-Jimenez, “Experimental evaluation of an analog gain optimization algorithm in optical camera communications,” in 2020 12th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP), pp. 1–5, 2020.

V. Matus, E. Eso, S. R. Teli, R. Perez-Jimenez, and S. Zvanovec, “Experimentally derived feasibility of optical camera communications under turbulence and fog conditions,” Sensors, vol. 20, p. 757, Jan 2020.

C. Jurado-Verdu, V. Matus, J. Rabadan, V. Guerra, and R. Perez-Jimenez, “Correlation-based receiver for optical camera communications,” Opt. Express, vol. 27, pp. 19150–19155, Jul 2019.

C. Jurado-Verdu, V. Guerra, J. Rabadan, R. Perez-Jimenez, and P. Chavez-Burbano, “Rgb synchronous VLC modulation scheme for occ,” in 2018 11th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP), pp. 1–6, July 2018.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab. CRC Press, 2019.

M. A. Khalighi and M. Uysal, “Survey on free-space optical communication: A communication theory perspective,” IEEE Communications Surveys Tutorials, vol. 16, no. 4, pp. 2231–2258, 2014.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential, and challenges,” IEEE communications surveys & tutorials, vol. 17, no. 4, pp. 2047–2077, 2015.

Y. Almadani, D. Plets, S. Bastiaens, W. Joseph, M. Ijaz, Z. Ghassemlooy, and S. Rajbhandari, “Visible light communications for industrial applications—challenges and potentials,” Electronics, vol. 9, no. 12, 2020.

N. Saha, M. S. Ifthekhar, N. T. Le, and Y. M. Jang, “Survey on optical camera communications: challenges and opportunities,” IET Optoelectronics, vol. 9, pp. 172–183(11), October 2015.

N. T. Le, M. Hossain, and Y. M. Jang, “A survey of design and implementation for optical camera communication,” Signal Processing: Image Communication, vol. 53, pp. 95–109, 2017.

J. L. H. Rios, “Experimental validation of inverse MPPM modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 100, no. 1e, 2020.

O. I. Younus, N. Bani Hassan, Z. Ghassemlooy, P. A. Haigh, S. Zvanovec, L. N. Alves, and H. L. Minh, “Data rate enhancement in optical camera communications using an artificial neural network equaliser,” IEEE Access, vol. 8, pp. 42656–42665, 2020.

P. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Visible light communications: multi-band super-Nyquist CAP modulation,” Optics Express, vol. 27, no. 6, pp. 8912–8919, 2019.

A. L. R. Gonçalves, Á. H. A. Maia, M. R. Santos, D. A. de Lima, and A. de Miranda Neto, “Visible light positioning and communication methods and their applications in the intelligent mobility,” IEEE Latin America Transactions, vol. 100, no. 1e, 2021.

N. Chaudhary, O. I. Younus, L. N. Alves, Z. Ghassemlooy, S. Zvanovec, and H. Le-Minh, “An indoor visible light positioning system using tilted LEDs with high accuracy,” Sensors, vol. 21, no. 3, 2021.

P. Palacios Játiva, M. Román Cañizares, C. A. Azurdia-Meza, D. ZabalaBlanco, A. Dehghan Firoozabadi, F. Seguel, S. Montejo-Sánchez, and I. Soto, “Interference mitigation for visible light communications in underground mines using angle diversity receivers,” Sensors, vol. 20, no. 2, 2020.

D. Iturralde, C. Azurdia-Meza, N. Krommenacker, I. Soto, Z. Ghassemlooy, and N. Becerra, “A new location system for an underground mining environment using visible light communications,” in 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), pp. 1165–1169, IEEE, 2014.

R. M. Marè, C. L. Marte, C. E. Cugnasca, O. G. Sobrinho, and A. S. dos Santos, “Feasibility of a testing methodology for visible light communication systems applied to intelligent transport systems,” IEEE Latin America Transactions, vol. 100, no. 1e, 2020.

M. Elamassie, M. Karbalayghareh, F. Miramirkhani, R. C. Kizilirmak, and M. Uysal, “Effect of fog and rain on the performance of vehicular visible light communications,” in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–6, 2018.

S. R. Teli, S. Zvanovec, R. Perez-Jimenez, and Z. Ghassemlooy, “Spatial frequency-based angular behavior of a short-range flicker-free MIMO–OCC link,” Appl. Opt., vol. 59, pp. 10357–10368, Nov 2020.

S. R. Teli, V. Matus, S. Zvanovec, R. Perez-Jimenez, S. Vitek, and Z. Ghassemlooy, “The first study of MIMO scheme within rolling-shutter based optical camera communications,” in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–5, 2020.

Nam-Tuan Le and Yeong Min Jang, “Performance evaluation of MIMO optical camera communications based rolling shutter image sensor,” in 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 140–144, 2016.

A. Ashok, S. Jain, M. Gruteser, N. Mandayam, W. Yuan, and K. Dana, “Capacity of pervasive camera-based communication under perspective distortions,” in 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 112–120, IEEE, 2014.

J. Shi, J. He, Z. Jiang, Y. Zhou, and Y. Xiao, “Enabling user mobility for optical camera communication using mobile phone,” Optics Express, vol. 26, no. 17, pp. 21762–21767, 2018.

T. Kuroda, Essential Principles of Image Sensors. CRC Press, 2017.

A. Ishimaru, Electromagnetic wave propagation, radiation, and scattering: from fundamentals to applications. John Wiley & Sons, 2017.

D. Kedar and S. Arnon, “Urban optical wireless communication networks: The main challenges and possible solutions,” Communications Magazine, IEEE, vol. 42, pp. S2 – S7, 06 2004.

D. Kedar and S. Arnon, “The positive contribution of fog to the mitigation of pointing errors in optical wireless communication,” Applied Optics, vol. 42, no. 24, pp. 4946–4954, 2003.

Cartográfica de Canarias (GRAFCAN), “Sistema de información territorial de Canarias.”

Sony Corporation, IMX219PQH5-C, Diagonal 4.60 mm (Type 1/4.0) 8 Mega-Pixel CMOS Image Sensor with Square Pixel for Color Cameras, Datasheet. Sony Corporation, 2014.

V. Matus, V. Guerra, S. Zvanovec, J. Rabadan, and R. Perez-Jimenez, “Sandstorm effect on experimental optical camera communication,” Appl. Opt., vol. 60, pp. 75–82, Jan 2021.

Published

2021-04-12

How to Cite

Matus, V., Guerra, V., Jurado-Verdu, C., Rabadan, J., & Perez-Jimenez, R. (2021). Demonstration of a Sub-Pixel Outdoor Optical Camera Communication Link. IEEE Latin America Transactions, 19(10), 1798–1805. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/5174

Issue

Section

Special Section on 5G and B5G Communications