Single-Observer Based Current Sensor Fault Tolerant Control for IM Traction Drives

Authors

  • Luis Esteban Venghi Grupo de Electrónica Aplicada (GEA), Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) https://orcid.org/0000-0003-3185-0975
  • Facundo Aguilera Grupo de Electrónica Aplicada (GEA), Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) https://orcid.org/0000-0002-8858-2222
  • Pablo M. de la Barrera Grupo de Electrónica Aplicada (GEA), Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) https://orcid.org/0000-0003-4944-9522
  • Cristian H. De Angelo Grupo de Electrónica Aplicada (GEA), Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) https://orcid.org/0000-0001-8080-927X

Keywords:

Electric vehicle, electric drive, fault detection, fault tolerance, current sensor

Abstract

In this work, a current sensors fault tolerant control system (FTCS) for induction motor traction drives is proposed. The FTCS uses a single observer for the detection and isolation of disconnection and gain faults occurred in a single or two current sensors available in the drive. Moreover, the observer signals are used for the control reconfiguration within a field-oriented control strategy. The effectiveness of the FTCS (detection, isolation and reconfiguration) and the performance of the control strategy after different faults and perturbations is verified by simulation results using an electric vehicle model.

Downloads

Download data is not yet available.

Author Biographies

Luis Esteban Venghi, Grupo de Electrónica Aplicada (GEA), Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET)

Luis E. Venghi naci´o en Santa Fe, Argentina, en 1987. Recibi´o su t´ıtulo de Ingeniero Electr´onico en 2016, en la Universidad Nacional de San Luis (UNSL). Actualmente es becario del CONICET e integrante del Grupo de Electr´onica Aplicada y se encuentra cursando el doctorado en Ciencias de la Ingenier´ıa en la Universidad Nacional de R´ıo Cuarto (UNRC), C´ordoba, Argentina. Sus temas de inter´es son: sistemas de control, observadores, accionamientos el´ectricos, veh´ıculos el´ectricos y tolerancia a fallas.

Facundo Aguilera, Grupo de Electrónica Aplicada (GEA), Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET)

Facundo Aguilera (S’05 - M’14 - SM’20) naci´o en San Luis, Argentina, en 1985. Recibi´o el t´ıtulo de Ingeniero Electr´onico con Orientaci´on en Sistemas Digitales en la Universidad Nacional de San Luis, en 2009, y el de doctor en Ciencias de la Ingenier´ıa en la Universidad Nacional de R´ıo Cuarto, Argentina, en 2015. Es miembro del Grupo de Electr´onica Aplicada de la Universidad Nacional de R´ıo Cuarto desde el 2010. Tambi´en es miembro del CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas de Argentina). Fue secretario (2015), vicepresidente (2016) y presidente (2017) del grupo de afinidad IEEE YPArgentina y actualmente es tesorero del Cap´ıtulo Conjunto #1 Argentina (IE13/CS23/RA24/IA34/PEL35/VT06).

Pablo M. de la Barrera, Grupo de Electrónica Aplicada (GEA), Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET)

Pablo M. de la Barrera (S’99 - GS’08 - M’09 - SM’15) naci´o en R´ıo Cuarto, Argentina, en 1978. Recibi´o el t´ıtulo de Ingeniero Electricista y Magister en Ciencias de la Ingenier´ıa en la Universidad Nacional de R´ıo Cuarto, Argentina, en 2003 y 2006, respectivamente, y el t´ıtulo de Doctor en Control de Sistemas en la Universidad Nacional del Sur, Argentina, en 2009. En 1998, se incorpor´o al Grupo de Electr´onica Aplicada, de la Universidad Nacional de R´ıo Cuarto. Tambi´en es miembro del CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas de Argentina). Dentro del IEEE, fue Secretario (de 2012 a 2016), Vicepresidente (2017) y Presidente (2018) del Cap´ıtulo Conjunto #1 de la Secci´on Argentina (IE13/CS23/RA24/IA34/PEL35/VT06).

Cristian H. De Angelo, Grupo de Electrónica Aplicada (GEA), Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET)

Cristian H. De Angelo (S’96 - M’05 - SM’10) recibi´o su t´ıtulo de Ingeniero Electricista en la Universidad Nacional de R´ıo Cuarto, Argentina, en 1999, y el grado de Dr. en Ingenier´ıa en la Universidad Nacional de La Plata, Argentina, en 2004. Desde 1994, se encuentra trabajando en el Grupo de Electr´onica Aplicada, Facultad de Ingenier´ıa, Universidad Nacional de R´ıo Cuarto. Actualmente es Profesor Adjunto en la Universidad Nacional de R´ıo Cuarto e Investigador Principal del Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas (CONICET), Argentina. Sus temas de inter´es en investigaci´on incluyen diagn´ostico de fallas en m´aquinas el´ectricas, accionamientos el´ectricos, veh´ıculos el´ectricos, eficiencia energ´etica y energ´ıas renovables.

References

B. Tabbache, M. Benbouzid, A. Kheloui, J.-M. Bourgeot, and A. Mamoune, “An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs,” ISA Transactions, vol. 52, no. 6, pp. 862–869, Nov. 2013.

D. Campos-Delgado, D. Espinoza-Trejo, and E. Palacios, “Fault-tolerant control in variable speed drives: a survey,” IET Electric Power Applications, vol. 2, no. 2, pp. 121–134, Mar. 2008.

G. A. Capolino, J. A. Antonino-Daviu, and M. Riera-Guasp, “Modern Diagnostics Techniques for Electrical Machines, Power Electronics, and Drives,” IEEE Tran. Ind. Electron., vol. 62, no. 3, pp. 1738–1745, Mar. 2015.

D. Campos-Delgado and D. Espinoza-Trejo, “An observer-based diagnosis scheme for single and simultaneous open-switch faults in induction motor drives,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 671–679, 2010.

A. Kolli, O. B´ethoux, A. De Bernardinis, E. Labour´e, and G. Coquery,

“Space-vector PWM control synthesis for an h-bridge drive in electric vehicles,” IEEE Trans. Veh. Technol., vol. 62, no. 6, pp. 2441–2452, 2013.

A. Raisemche, M. Boukhnifer, and D. Diallo, “New fault-tolerant control architectures based on voting algorithms for electric vehicle induction motor drive,” Transactions of the Institute of Measurement and Control, vol. 38, no. 9, pp. 1120–1135, 2016.

F. Aguilera, P. de la Barrera, C. De Angelo, and D. Espinoza Trejo, “Current-sensor fault detection and isolation for induction-motor drives using a geometric approach,” Control Engineering Practice, vol. 53, pp. 35–46, Aug. 2016.

X. Shi and M. Krishnamurthy, “Survivable Operation of Induction Machine Drives With Smooth Transition Strategy for EV Applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 3, pp. 609–617, Sep. 2014.

L. E. Venghi, F. Aguilera, G. N. Gonzalez, P. M. de la Barrera, and C. H. De Angelo, “Effects of open-switch faults over speed sensor faulttolerant scheme for electric traction drive,” in 2020 IEEE International Conference on Industrial Technology (ICIT), Feb. 2020, pp. 731–736.

F. Aguilera, P. M. de la Barrera, and C. H. De Angelo, “Behavior of electric vehicles and traction drives during sensor faults,” in 2012 10th IEEE/IAS International Conf. on Ind. Applicat., 2012.

R. Isermann, Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Springer Science & Business Media, 2006.

S. K. Kommuri, M. Defoort, H. R. Karimi, and K. C. Veluvolu, “A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7671–7681, 2016.

N. M. A. Freire, J. O. Estima, and A. J. M. Cardoso, “A New Approach for Current Sensor Fault Diagnosis in PMSG Drives for Wind Energy Conversion Systems,” IEEE Trans. Ind. Applicat., vol. 50, no. 2, pp. 1206–1214, Mar. 2014.

C. Wu, C. Guo, Z. Xie, F. Ni, and H. Liu, “A signal-based fault detection and tolerance control method of current sensor for PMSM drive,” IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9646–9657, 2018.

F. R. Salmasi, “A Self-Healing Induction Motor Drive With Model Free Sensor Tampering and Sensor Fault Detection, Isolation, and Compensation,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6105–6115, Aug. 2017.

G. H. B. Foo, X. Zhang, and D. M. Vilathgamuwa, “A Sensor Fault Detection and Isolation Method in Interior Permanent-Magnet Synchronous Motor Drives Based on an Extended Kalman Filter,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3485–3495, Aug. 2013.

Y. Rkhissi-Kammoun, J. Ghommam, M. Boukhnifer, and F. Mnif, “Two current sensor fault detection and isolation schemes for induction motor drives using algebraic estimation approach,” Mathematics and Computers in Simulation, vol. 157, pp. 39–62, 2019.

Y. Liu, M. Stettenbenz, and A. M. Bazzi, “Smooth fault-tolerant control of induction motor drives with sensor failures,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3544–3552, 2018.

A. Gouichiche, A. Safa, A. Chibani, and M. Tadjine, “Global faulttolerant control approach for vector control of an induction motor,” International Transactions on Electrical Energy Systems, vol. 30, no. 8, Aug. 2020. https://doi.org/10.1002/2050-7038.12440.

S. K. Kommuri, S. B. Lee, and K. C. Veluvolu, “Robust sensors-fault-tolerance with sliding mode estimation and control for PMSM drives,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 1, pp. 17–28, 2017.

Q. Zhu, Z. Li, X. Tan, D. Xie, and W. Dai, “Sensors fault diagnosis and active fault-tolerant control for PMSM drive systems based on a composite sliding mode observer,” Energies, vol. 12, no. 9, p. 1695, 2019.

Y. Yu, Y. Zhao, B. Wang, X. Huang, and D. Xu, “Current Sensor Fault Diagnosis and Tolerant Control for VSI-Based Induction Motor Drives,” IEEE Trans. Power Electron., vol. 33, no. 5, pp. 4238–4248, May 2018.

C. Chakraborty and V. Verma, “Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1943–1954, 2015.

M. Manohar and S. Das, “Current Sensor Fault-Tolerant Control for Direct Torque Control of Induction Motor Drive Using Flux-Linkage Observer,” IEEE Trans. Ind. Informatics, vol. 13, no. 6, pp. 2824–2833, Dec. 2017.

Y. Azzoug, M. Sahraoui, R. Pusca, T. Ameid, R. Romary, and A. J.

Marques Cardoso, “Current sensors fault detection and tolerant control strategy for three-phase induction motor drives,” Electrical Engineering, Oct. 2020. https://doi.org/10.1007/s00202-020-01120-5.

H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle system dynamics, vol. 21, no. S1, pp. 1–18, 1992.

P. Jansen and R. Lorenz, “A physically insightful approach to the design and accuracy assessment of flux observers for field oriented induction machine drives,” IEEE Trans. Ind. Applicat., vol. 30, no. 1, pp. 101–110, Feb. 1994.

H. K. Khalil and J. W. Grizzle, Nonlinear systems. Prentice hall Upper Saddle River, NJ, 2002, vol. 3.

S. H. Jeon, K. K. Oh, and J. Y. Choi, “Flux observer with online tuning of stator and rotor resistances for induction motors,” IEEE Transactions on industrial electronics, vol. 49, no. 3, pp. 653–664, 2002.

Published

2021-05-26

How to Cite

Venghi, L. E., Aguilera, F., de la Barrera, P. M., & De Angelo, C. H. (2021). Single-Observer Based Current Sensor Fault Tolerant Control for IM Traction Drives. IEEE Latin America Transactions, 19(12), 2087–2096. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/5126