Vortex Search Algorithm Applied to the Parametric Estimation in PV Cells Considering Manufacturer Datasheet Information
Keywords:
Photovoltaic modules, parametric estimation, vortex search algorithm, metaheuristic optimization, Manufacturer information, single-diode informationAbstract
This paper addresses the problem of parametric estimation in solar cells considering manufacturer datasheet information regarding open-circuit, short-circuit, and maximum power points from the point of view of mathematical optimization. To represent this problem a single-objective function is formulated associated with the minimization of the mean square error of the single-diode model evaluated in the operational points reported by the manufacturer. The solution of this nonlinear non-convex optimization model is addressed with a metaheuristic optimization technique known in specialized literature as a vortex search algorithm (VSA). This metaheuristic optimization method works with Gaussian distribution functions and variable radius to explore and exploit the solution space by generating hyperspheres that move through the solution space as a function of the best current solution. The VSA is implemented in MATLAB environment by using commercial photovoltaic module information, where numerical results demonstrate the efficiency of this optimization method with objective functions lower than $1\times10^{-25}$ and processing times around $6.13~s$.
Downloads
References
P. P. Biswas, P. N. Suganthan, G. Wu, and G. A. Amaratunga, “Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm,” Renewable Energy, vol. 132, pp. 425–438, 2019.
R. A. Messenger and A. Abtahi, Photovoltaic systems engineering. CRC press, 2017.
S. Li, W. Gong, X. Yan, C. Hu, D. Bai, and L. Wang, “Parameter estimation of photovoltaic models with memetic adaptive differential evolution,” Solar Energy, vol. 190, pp. 465–474, 2019.
U. Jadli, P. Thakur, and R. D. Shukla, “A new parameter estimation method of solar photovoltaic,” IEEE Journal of Photovoltaics, vol. 8, no. 1, pp.239–247, 2017.
A. A. Z. Diab, H. M. Sultan, R. Aljendy, A. S. Al-Sumaiti, M. Shoyama, and Z. M. Ali, “Tree growth-based optimization algorithm for parameter extraction of different models of photovoltaic cells and modules,” IEEE Access, vol. 8, pp. 119 668–119 687, 2020.
O. Aydin, H. Gozde, M. Dursun, and M. C. Taplamacioglu, “Comparative parameter estimation of single diode PV-cell model by using sine-cosine algorithm and whale optimization algorithm,” in 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE). IEEE, 2019, pp. 65–68.
A. A. Z. Diab, H. M. Sultan, T. D. Do, O. M. Kamel, and M. A. Mossa, “Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules,” IEEE Access, vol. 8, pp. 111 102–111 140, 2020.
“Time-varying acceleration coefficients particle swarm optimisation (tvacpso): A new optimization algorithm for estimating parameters of PV cells and modules.”
A. R. Jordehi, “Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules,” Solar Energy, vol. 159, pp. 78–87, 2018.
D. Alam, D. Yousri, and M. Eteiba, “Flower pollination algorithm based solar PV parameter estimation,” Energy Conversion and Management, vol. 101, pp. 410–422, 2015.
S. Xu and Y. Wang, “Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm,” Energy Conversion and Management, vol. 144, pp. 53–68, 2017.
X. Gao, Y. Cui, J. Hu, G. Xu, Z. Wang, J. Qu, and H. Wang, “Parameter extraction of solar cell models using improved shuffled complex evolution algorithm,” Energy conversion and management, vol. 157, pp. 460–479, 2018.
K. Yu, J. Liang, B. Qu, X. Chen, and H. Wang, “Parameters identification of photovoltaic models using an improved JAYA optimization algorithm,” Energy Conversion and Management, vol. 150, pp. 742–753, 2017.
W. Gong and Z. Cai, “Parameter extraction of solar cell models using repaired adaptive differential evolution, “Solar Energy, vol. 94, pp. 209–220, 2013.
L. L. Jiang, D. L. Maskell, and J. C. Patra, “Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm,” Applied Energy, vol. 112, pp. 185–193, 2013.
K. Et-Torabi, I. Nassar-Eddine, A. Obbadi, Y. Errami, R. Rmaily, S. Sahnoun, M. Agunaouet al., “Parameters estimation of the single and double diode photovoltaic models using a gauss–seidel algorithm and analytical method: A comparative study,” Energy Conversion and Management, vol. 148, pp.1041–1054, 2017.
I. Nassar-Eddine, A. Obbadi, Y. Errami, M. Agunaouet al., “Parameter estimation of photovoltaic modules using iterative method and the lambert w function: A comparative study,”Energy Conversion and Management, vol. 119, pp. 37–48, 2016.
M. G. Villalva, J. R. Gazoli, and E. Ruppert Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Transactions on power electronics, vol. 24, no. 5, pp. 1198–1208, 2009.
J. J. Soon and K.-S. Low, “Photovoltaic model identification using particle swarm optimization with inverse barrier constraint,” IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 3975–3983, 2012.
M. S. Ismail, M. Moghavvemi, and T. Mahlia, “Characterization of pv panel and global optimization of its model parameters using genetic algorithm,” Energy Conversion and Management, vol. 73, pp. 10–25, 2013.
B. Do ̆gan and T. ̈Olmez, “A new metaheuristic for numerical function optimization: Vortex Search algorithm,” Information Sciences, vol. 293, pp.125–145, feb 2015.
M. A. Qyyum, M. Yasin, A. Nawaz, T. He, W. Ali, J. Haider, K. Qadeer, A.-S. Nizami, K. Moustakas, and M. Lee, “Single-Solution-Based Vortex Search Strategy for Optimal Design of Offshore and Onshore Natural Gas Liquefaction Processes,” Energies, vol. 13, no. 7, p. 1732, apr 2020.
O. D. Montoya, W. Gil-Gonzalez, and L. F. Grisales-Noreña, “Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks With CPLs,” IEEE Trans. Circuits Syst. II, vol. 67, no. 8, pp. 1439–1443, aug 2020.
P. P. Biswas, P. Suganthan, G. Wu, and G. A. Amaratunga, “Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm,” Renewable Energy, vol. 132, pp. 425 – 438, 2019.
O. D. Montoya, W. Gil-Gonz alez, and L. F. Grisales-Noreña, “Sine-cosine algorithm for parameters’ estimation in solar cells using datasheet information,” J. Phys. Conf. Ser., vol. 1671, p. 012008, oct 2020.
S. F. Razavi and H. Sajedi, “SVSA: a Semi-Vortex Search Algorithm for solving optimization problems,” International Journal of Data Science and Analytics, vol. 8, no. 1, pp. 15–32, nov 2018.
O. D. Montoya, W. Gil-González, and C. Orozco-Henao, “Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach,” Engineering Science and Technology, an International Journal, aug 2020.
A. Saha, P. Das, and A. K. Chakraborty, “Water evaporation algorithm: A new metaheuristic algorithm towards the solution of optimal power flow,” Engineering Science and Technology, an International Journal, vol. 20, no. 6, pp. 1540–1552, dec 2017.