Multilayer Extreme Learning Machine as Equalizer in OFDM-based Radio-over-fiber Systems

Authors

Keywords:

Machine Learning, equalizer, 5G Technology

Abstract

Mobile/wireless networks aim to support diverse services with numerous and sophisticated requirements, such as energy efficiency, spectral efficiency, negligible latency, robustness against time and frequency selective channels, low hardware complexity, among others. From the central station to the base stations, radio-over-fiber orthogonal frequency division multiplexing (RoF-OFDM) schemes with direct-detection are then implemented. Unfortunately, laser phase noise, chromatic fiber dispersion, and carrier frequency offset impair the orthogonality of the subcarriers; hence, deteriorating the performance of the RoF-OFDM system. In order to take all the processing tasks to the cognitive level (the last goal in the telecommunication industry), various extreme learning machines (ELMs), composed by only a single hidden layer, have been recently adopted as equalizers. The reason behind this trend comes from the lower computational complexity, higher detection accuracy, and minimum human intervention of the ELM algorithms. In this article, we introduce a multilayer ELM-based receiver for RoF schemes transmitting phase-correlated OFDM signals affected by phase and frequency errors. Results report that by appropriately setting the hyper-parameters of the multilayer ELMs, the ELM with 3 hidden layers outperforms most of the ELMs reported in the literature (the ELM with 2 hidden layers, original ELM, regularized ELM, and 2 fully-independent ELMs defined in the real domain), as well as the benchmark pilot-assisted equalizer in terms of bit error rate. Nevertheless, this benefit comes with excessive computational cost. Finally, we show that the fully-complex ELM is still the best equalizer taking into account several key metrics.

Downloads

Download data is not yet available.

Author Biographies

David Zabala-Blanco, Centro de investigación de estudios avanzados del Maule (CIEAM), Vicerrectoría de investigación y postgrado, Universidad Católica del Maule, Talca 3466706, Chile

David Zabala-Blanco recibió el grado de Doctor en Tecnologías de Información y Comunicaciones del Tecnológico de Monterrey, México en 2018. Desde el 2019 es Investigador Postdoctorante en la Universidad Católica del Maule, Talca, Chile. Entre sus intereses de investigación están: sistemas de comunicación ópticos e inalámbricos, formatos de modulación multiportadora, máquinas de aprendizaje extremo y clasificación de huellas digitales.

Marco Mora, Departamento de Computación e Industrias,Universidad Católica del Maule

Marco Mora se graduó como Doctor en Ciencias de la Computación de la Universidad de Toulouse, Francia en 2008. Actualmente es Profesor Asistente del Departamento de Computación e Informática de la Universidad Católica del Maule, Talca, Chile. Entre sus áreas de experticia destacan tratamientos de imágenes, morfología matemática, redes neuronales, entre otras.

Cesar A. Azurdia-Meza, Departamento de Ingeniería Eléctrica, Universidad de Chile

Cesar A. Azurdia-Meza recibió el grado de Doctor en Ingeniería Electrónica y de Radio de la Universidad Kyung Hee, República de Corea en 2013. Desde el 2013 es Profesor Asistente de la Universidad de Chile. Entre sus intereses de investigación destacan: sistemas basados en OFDM y SC-FDMA, sistemas de comunicación en luz visible, comunicaciones vehiculares, y técnicas de procesamiento de señal para sistemas de comunicaciones.

Ali Dehghan Firoozabadi, Departamento de Electricidad,Universidad Tecnológica Metropolitana

Ali Dehghan Firoozabadi recibió el grado de Ph.D. en Ingeniería Eléctrica (Telecomunicaciones) de la Universidad Yazd, Irán en 2015. Desde septiembre de 2017 es Profesor Asociado del Departamento de Electricidad, Universidad Tecnológica Metropolitana, Santiago, Chile. Su investigación actual se centra en los siguientes tópicos: el procesamiento del habla, el procesamiento

Palacios Játiva Palacios Játiva, Departamento de Ingeniería Eléctrica, Universidad de Chile

Pablo Palacios Játiva recibió el título de Maestría en Ingeniería de Redes de Comunicaciones en la Universidad de Chile, Chile en 2017. Actualmente es estudiante de Doctorado en Ingeniería Eléctrica en la Universidad de Chile. Entre sus intereses de investigación están: sistemas de comunicación por luz visible e inalámbricos, radio cognitiva, métodos basados en NOMA para asignación de potencia, y algoritmos de detección y decisión sobre el espectro de radiofrecuencia.

Samuel Montejo-Sánchez, Programa Institucional de Fomento a la I+D+i,Universidad Tecnológica Metropolitana

Samuel Montejo-Sánchez recibió el título de Doctor en Ciencias Técnicas (Telecomunicaciones) en la Universidad Central de Las Villas (UCLV), Cuba en 2013. En el 2016 recibió el Premio Nacional de la Academia de Ciencias de Cuba. Desde el 2018 es Investigador Académico del Programa Institucional de Fomento a la I+D+i en la Universidad Tecnológica Metropolitana. Entre sus intereses de investigación están, la eficiencia energética, confiabilidad, seguridad y optimización en las comunicaciones inalámbricas.

References

J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 4, pp. 1593–1619, 2013.

J. Perez Santacruz, S. Rommel, U. Johannsen, A. Jurado-Navas, and I. Tafur Monroy, “Candidate waveforms for ARoF in beyond 5G,” Applied Sciences, vol. 10, no. 11, 2020.

Y. He, Y. Chen, Y. Hu, and B. Zeng, “WiFi vision: sensing, recognition, and detection with commodity MIMO-OFDM WiFi,” IEEE Internet of Things Journal, pp. 1–1, 2020.

G. Li, Z. Lin, X. Huang, and J. Li, “A radio over fiber system with simultaneous wireless multi-mode operation based on a multi-wavelength optical comb and pulse-shaped 4QAM-OFDM,” Electronics, vol. 8, no. 10, 2019.

V. Sarup and A. Gupta, “A Study of various trends and enabling technologies in radio over fiber (RoF) systems,” Optik, vol. 126, no. 20, pp. 2606 – 2611, 2015.

L. Zhang, Y. Ming, and J. Li, “Suppression of laser phase noise in direct-detection optical OFDM transmission using phase-conjugated pilots,” Optics Communications, vol. 403, pp. 197 – 204, 2017.

V. A. Thomas, M. El-Hajjar, and L. Hanzo, “Millimeter-wave radio over fiber optical upconversion techniques relying on link nonlinearity,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 29–53, 2016.

P. Torres Ferrera, L. Pacheco Ramirez, and R. Gutierrez Castrejon, “Next-generation 400 Gb/s Ethernet PMD over SMF at 1310 nm via DD-OFDM with electro-absorption modulator-based transmitters,” IEEE Latin America Transactions, vol. 14, no. 6, pp. 2681–2686, 2016.

D. Zabala-Blanco, C. A. Azurdia-Meza, S. Montejo-Sanchez, and A. Dehghan Firoozabadi, “OFDM tolerance to additive white Gaussian and laser phase noises in optical heterodyning systems accompanied by the feasible pilot-assisted equalization,” Optical Review, vol. 27, no. 2, pp. 156–169, Apr 2020.

V. Kishore, V. S. Prasad, and V. V. Mani, “A blind timing synchronization algorithm for DCO-OFDM VLC systems,” IEEE Photonics Technology Letters, vol. 32, no. 17, pp. 1121–1124, 2020.

L. Gonzalez-Guerrero, H. Shams, I. Fatadin, M. J. Fice, M. Naftaly, A. J. Seeds, and C. C. Renaud, “Single sideband signals for phase noise mitigation in wireless THz-over-fibre systems,” Journal of Lightwave Technology, vol. 36, no. 19, pp. 4527–4534, 2018.

L. Tao, J. Yu, J. Zhang, Y. Shao, and N. Chi, “Reduction of intercarrier interference based on window shaping in OFDM RoF systems,” IEEE Photonics Technology Letters, vol. 25, no. 9, pp. 851–854, 2013.

T. Kanesan, S. T. Le, D. Roque, and A. D. Ellis, “Non-rectangular perfect reconstruction pulse shaping based ICI reduction in CO-OFDM,” Optics Express, vol. 22, no. 2, pp. 1749–1759, Jan 2014.

D. Zabala-Blanco, G. Campuzano, C. A. Azurdia-Meza, and S. Montejo-Sanchez, “Performance enhancement in OFDM systems with ICI utilizing the improved double-jump linear combination pulse,” in IEEE 9th Latin-American Conference on Communications (LATINCOM), 2017, pp. 1–6.

M. R. Kaloop, D. Kumar, P. Samui, A. R. Gabr, J. W. Hu, X. Jin, and B. Roy, “Particle swarm optimization algorithm-extreme learning machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases,” Applied Sciences, vol. 9, no. 16, 2019.

D. Zabala-Blanco, M. Mora, C. A. Azurdia-Meza, A. Dehghan Firoozabadi, P. Palacios Jativa, and I. Soto, “Relaxation of the radiofrequency linewidth for coherent-optical orthogonal frequency-division multiplexing schemes by employing the improved extreme learning

machine,” Symmetry, vol. 12, no. 4, 2020.

D. Zabala-Blanco, G. Campuzano, I. Aldaya, G. Castanon, and C. Vargas-Rosales, “Impact of partial phase decorrelation on the performance of pilot-assisted millimeter-wave RoF-OFDM systems,” Physical Communication, vol. 26, pp. 106 – 115, 2018.

B. Lim and Y. Ko, “SIR analysis of OFDM and GFDM waveforms with timing offset, CFO, and phase noise,” IEEE Transactions on Wireless Communications, vol. 16, no. 10, pp. 6979–6990, 2017.

D. Zabala-Blanco, M. Mora, C. A. Azurdia-Meza, and A. Dehghan Firoozabadi, “Extreme learning machines to combat phase noise in RoFOFDM schemes,” Electronics, vol. 8, no. 9, 2019.

A. Ferreira, B. Dias, J. A. de Oliveira, A. Alves, J. D. Marconi, G. Campuzano, J. Pita, and I. Aldaya, “Optimization of OFDM Parameters for 10-Gbps Long Reach Coherent PONs,” in 21st International Conference on Transparent Optical Networks (ICTON), 2019, pp. 1–4.

D. Wang, L. Yuan, J. Lei, G. wu, S. Li, R. Ding, and D. Wang, “Joint channel/frequency offset estimation and correction for coherent optical FBMC/OQAM system,” Optical Fiber Technology, vol. 39, pp. 87 – 94, 2017.

C. Zhang, Y. Ueng, C. Studer, and A. Burg, “Artificial intelligence for 5G and beyond 5G: implementations, algorithms, and optimizations,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 2, pp. 149–163, 2020.

M. G. Kibria, K. Nguyen, G. P. Villardi, O. Zhao, K. Ishizu, and F. Kojima, “Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks,” IEEE Access, vol. 6, pp. 32 328–32 338, 2018.

G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme learning machines: A review,” Neural Networks, vol. 61, pp. 32 – 48, 2015.

G. Kaur and G. Kaur, “Performance analysis of Wilcoxon-based machine learning nonlinear equalizers for coherent optical OFDM,” Optical and Quantum Electronics, vol. 50, no. 6, p. 256, Jun 2018.

D. F. Carrera, D. Zabala-Blanco, C. Vargas-Rosales, and C. A. Meza-Azurdia, “Extreme learning machine-based receiver for multi-user massive MIMO systems,” IEEE Communications Letters, 2020.

J. Liu, K. Mei, X. Zhang, D. Ma, and J. Wei, “Online extreme learning machine-based channel estimation and equalization for OFDM systems,” IEEE Communications Letters, vol. 23, no. 7, pp. 1276–1279, 2019.

L. Yang, Q. Zhao, and Y. Jing, “Channel equalization and detection with ELM-based regressors for OFDM systems,” IEEE Communications Letters, vol. 24, no. 1, pp. 86–89, 2020.

L. Kasun, H. Zhou, G.-B. Huang, and C. Vong, “Representational learning with ELMs for big data,” IEEE Intelligent Systems, vol. 28, pp. 31–34, 2013.

J. Tang, C. Deng, and G. Huang, “Extreme learning machine for multilayer perceptron,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 4, pp. 809–821, 2016.

S. Ding, N. Zhang, X. Xu, L. Guo, and J. Zhang, “Deep extreme learning machine and its application in EGG classification,” Mathematical Problems in Engineering, vol. 2014, p. 129021, Nov 2014.

I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of key-enabling components for remote millimetric wave generation in radio over fiber networks,” Optics & Laser Technology, vol. 49, pp. 213 – 226, 2013.

S. Kamal, C. A. Azurdia-Meza, and K. Lee, “Suppressing the effect of ICI power using dual sinc pulses in OFDM-based systems,” AEU - International Journal of Electronics and Communications, vol. 70, no. 7, pp. 953 – 960, 2016.

Published

2021-04-12

How to Cite

Zabala-Blanco, D., Mora, M., Azurdia-Meza, C. A., Dehghan Firoozabadi, A., Palacios Játiva, P., & Montejo-Sánchez, S. (2021). Multilayer Extreme Learning Machine as Equalizer in OFDM-based Radio-over-fiber Systems. IEEE Latin America Transactions, 19(10), 1790–1797. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/4877

Issue

Section

Special Section on 5G and B5G Communications