Development of an Embedded Longitudinal Flight Control Based on X-Plane Flight Simulator

Authors

Keywords:

Avionics, Embedded Systems, X-Plane, Automatic Flight Control Systems

Abstract

Avionics is a category of electronic systems, equipment and instruments specifically designed for use in aviation. Usually called autopilot, the Automatic Flight Control System, is one of the main systems in avionics. Autopilot systems are designed to automatically control the aircraft piloting, reducing the pilot fatigue caused by the flight. Before being embedded into an aircraft, an autopilot system must be exhaustively evaluated by computational simulations to be validated. The objective of this work is to describe the development of an embedded automatic flight controller aimed to be applied to a Cessna-172SP-Skyhawkmodel aircraft in order to control its altitude. The developed flight controller is based on a tuned PID control and it is embedded in a Raspberry Pi that actually controls the altitude of the aircraft simulated in the X-Plane 11 flight simulator, running on a Desktop PC connected by UDP to the Raspberry Pi. The simulation results validated the proposed flight controller as well as the proposed hardware scheme for validation.

Downloads

Download data is not yet available.

Author Biographies

Luan Carlos Florencio Henriques, Universidade Federal da Paraíba

Mestrando em Otimização de Sistemas de Energia pela Universidade Federal da Paraíba (UFPB). Graduado em Engenharia Elétrica pela mesma universidade (2020). Desenvolveu atividades em pesquisa, ensino e extensão na UFPB. Atualmente desenvolve pesquisa em Machine Learning para Otimização de Sistemas de Energia em Smart Grids para o SmartGrid Group (SG2) na UFPB. Possui experiência em Instrumentação Eletrônica, condicionamento de sinais e projeto de controle e estabilidade.

Cleonilson Protásio de Souza, Universidade Federal da Paraíba

Doutor em Engenharia Elétrica pela Universidade Federal de Campina Grande (2006) com pós-doutorado pela University of Washington Tacoma em 2018. Atualmente é Bolsista de Produtividade em Desenvolvimento Tecnológico e Extensão Inovadora do CNPq - DT2 e foi Bolsista de Produtividade em Pesquisa do CNPq - PQ2 pelo CA de Microeletrônica entre os anos de 2010 e 2013. Suas áreas de interesse são: desenvolvimento de sistemas de colheita de Energia (Energy Harvesting) visando Redes de Sensores sem-fio (RSSF) e IoT (Internet of Things), teste de circuitos integrados e sistemas eletrônicos embarcados. Membro do Instituto Nacional de Ciência e Tecnologia de Sistemas Micro e Nanoeletrônicos (INCT NAMITEC) e membro do IEEE TC-13 - Wireless \& Telecommunications in Measurements

References

D. Roskam, Airplane Flight Dynamics and Automatic Flight Controls - Part I and Part II. 3 ed., Lawrence: DARcorporation, 2001.

S. R. B. Santos, “Arquitetura de um piloto automatico longitudinal ”hardware in loop” com o simulador x-plane,” Master’s thesis, Instituto Tecnologico da Aeronáutica, São José dos Campos, 2009.

E. Çetín, “System identification and controle of a fixed wing aircraft by using flight data obtained from x-plane flight simulator,” Master Thesis. Middle East Technical University, Turkey, p. 169, 2018.

M. A. Elsadig and M. A. Elbakri, “Design of autopilot platform using hils approach,” in 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), pp. 1–6, 2017.

P. C. Jan Vlk, “Metodologia de sintonia pid multi-malha para veículos aéreos não tripulados: dinâmica longitudinal”, Congresso Brasileiro de Automática, 2012.

Rogalski, Tomasz, Nowak, Dariusz, Walek, Lukasz, Rzónca, Dariusz, and Samolej, Slawomir, “Control system for aircraft take-off and landing based on modified pid controllers,” MATEC Web Conf., vol. 252, p. 06008, 2019.

Y. V. P. Kumar, K. M. N. S. Kiran, S. Yugandhar, and K. P. Raju, “Online attitude controlling of longitudinal autopilot for general aviation aircraft using artificial neural networks,” in 2013 Nirma University International Conference on Engineering (NUiCONE), pp. 1–6, 2013.

ICAO/OACI, “The convention on international civil aviation: Annexes 1 to 18.,” Toronto, Canada, 1948. URL = https://www.icao.int/safety/airnavigation/nationalitymarks/annexes booklet_en.pdf.

ICAO/OACI, “Flight controls”, France, 2010. URL = https://www.lavionnaire.fr/VocableFlightControl.php.

J. M. Homa, Conhecimentos Técnicos de Aeronaves e Motores. 32 ed., Sao Paulo: Editora ASA, 2012.

N. S. Saintive, Teoria de voo: Introdução a Aerodinâmica. 7 ed., São Paulo: Editora ASA, 2015.

M. V. Cook, Flight Dynamics Principles. A linear systems approach to

Aircraft Stability and Control. 3 ed., Oxford: Elsevier, 2012.

W. H. Leisher L, Stability derivatives of cessna aircraft. Wichita: Cessna

Aircraft Company, 1957.

C. Kasnakoglu, “Investigation of multi-input multi-output robust control methods to handle parametric uncertainties in autopilot design,” PLOS

ONE, vol. 11, 2016.

R. C. Dorf, Sistema de Controle Modernos. 11 ed, São Paulo: LTC,

A. K. et al, “Flight dynamics, stability and control of a flexible airplane,” 15th International Conference on Aerospace Sciences Aviation Technology., Cairo, 2013.

V. Bernal, “Protocolo udp: “user datagram protocol”, 2016. URL = https://edisciplinas.usp.br/pluginfile.php/4665877/mod resource/content/1/61-Revisao-udp-v5.pdf. Acesso em 10 de março de 2020.

Published

2021-04-12

How to Cite

Florencio Henriques, L. C., & Protásio de Souza, C. (2021). Development of an Embedded Longitudinal Flight Control Based on X-Plane Flight Simulator. IEEE Latin America Transactions, 19(10), 1684–1691. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/4770