Efficiency of Class III Surge Protection Devices against Lightning Surges

Authors

Keywords:

Surges, Lightning protection, Current measurement, Current-voltage characteristics, Refrigerators and Low-power electronics

Abstract

The power surges produced by lightning discharges affect the electrical network at residences and cause damages in home appliances. To avoid these damages, it is recommended to use Surge Protection Devices (SPD) in the power input of the appliances (SPD Class III). This article presents the current levels that the SPD Class III bypass at the entrance of the appliances. We show that the SPD can deflect 75% of the current that reaches it. We also show that SPD increase the voltage level supported by equipment in 2 kV or more and thus maintain the equipment's useful life. Cell phone chargers, laptop chargers and refrigerator power supply were submitted to a series of surges with different voltage levels to determine the number of surges that each equipment can withstand at a specific voltage. In all the studied equipment, SPD increased the number of supported surges.

Downloads

Download data is not yet available.

Author Biographies

Gustavo Oliveira Cavalcanti, Escola Politécnica da Universidade de Pernambuco.

Graduado em Engenharia Elétrica (2005), Mestre (2008) e Doutor em Engenharia Elétrica (2013) pela Universidade Federal de Pernambuco. Atualmente é professor Associado da Universidade de Pernambuco. Suas áreas de interesse são: qualidade da energia elétrica, interferência e compatibilidade eletromagnética e sensoriamento.

Marcilio Andre Felix Feitosa, Escola Politécnica da Universidade de Pernambuco.

Graduado em Engenharia Elétrica (1997), Mestre em Biofísica (2000) e Doutor em Engenharia Elétrica (2009) pela Universidade Federal de Pernambuco. Atualmente é professor adjunto da Universidade de Pernambuco. Suas áreas de interesse são: instrumentação, sistemas embarcados, sistemas de controle eletrônicos e eletrônica de potência.

Kayro Fellyx Henrique Pereira, Escola Politécnica da Universidade de Pernambuco.

Graduado em Ciência da Computação pela Faculdade de Tecnologia e Ciências de Pernambuco. Atualmente é estudante de Mestrado da Universidade de Pernambuco. Suas áreas de interesse são: Eletrônica digital, sistemas embarcados, automação, desenvolvimento de software e inteligência artificial.

Manoel Henrique da Nobrega Marinho, Escola Politécnica da Universidade de Pernambuco.

Graduado em Engenharia Civil pela Universidade Federal da Campina Grande (1999), Mestre em Engenharia Civil (2002) e Doutor em Engenharia Elétrica (2005) pela Universidade Estadual de Campinas. Atualmente é professor adjunto da Universidade de Pernambuco. Suas áreas de interesse são: probabilidade, estatística, processos estocásticos, e engenharia de confiabilidade na área de Análise de Dados de Vida.

Antonio Samuel Neto, Escola Politécnica da Universidade de Pernambuco.

Graduado em Engenharia Elétrica (2003) e Mestre (2005) em Engenharia Elétrica pela Universidade Federal de Pernambuco. Atualmente é professor assistente da Universidade de Pernambuco. Suas áreas de interesse são: transitórios eletromagnéticos, eletrônica de potência aplicada a sistema elétrico, integração de energias renováveis ao sistema elétrico de potência.

Lucas de Carvalho Sobral, Escola Politécnica da Universidade de Pernambuco.

Graduando em Engenharia Elétrica com ênfase em Eletrônica pela Universidade de Pernambuco. Técnico em Eletrônica pelo Serviço Nacional de Aprendizagem Industrial - SENAI (2016). Suas áreas de interesse são: Eletrônica de potência, sistemas embarcados, projetos e sistemas com microcontroladores e instrumentação.

Pollyana Maria Ramos Goncalves, scola Politécnica da Universidade de Pernambuco.

Graduanda em Engenharia Elétrica eletrotécnica pela Universidade de Pernambuco. Suas áreas de interesse são: eficiência energética, sistemas de automação industrial, planejamento dos sistemas elétricos, geração de energia elétrica, acionamentos e operação de máquinas elétricas.

Douglas Thiago Moreira Lara, CLAMPER Indústria e Comércio S.A.

Graduado em Engenharia Eletrônica e de Telecomunicações (2010) pela PUC-Minas e pós-graduado em gestão de projetos (2011) pela Faculdade Pitágoras. Atualmente é engenheiro da CLAMPER S/A. Suas áreas de interesse são: manutenção industrial, engenharia de processos, projetos industriais e ensaios elétricos de dispositivos de proteção contra surtos elétricos na CLAMPER S/A.

Thiago Francisco Gomes, CLAMPER Indústria e Comércio S.A.

Graduado em Engenharia Elétrica - Eletrônica (2014) pela PUC minas e Matemática (2018) pela ISEAT. Atualmente é engenheiro de aplicação de dispositivos de proteção contra surtos elétricos na CLAMPER S/A. Suas áreas de interesse são: soluções para medição de energia elétrica com sistemas Smart Grid e dispositivos de proteção contra surtos.

Renato Jardim Teixeira, CLAMPER Indústria e Comércio S.A.

Graduado em Engenharia Elétrica (2012) pela Unileste-MG e pós-graduado em Automação Industrial (2013) pela PUC-Minas. Atualmente é engenheiro de aplicação de dispositivos de proteção contra surtos elétricos na CLAMPER S/A. Suas áreas de interesse são: telecomunicações, usinas de geração a diesel e dispositivos de proteção contra surtos.

Wagner Almeida Barbosa, CLAMPER Indústria e Comércio S.A.

Graduado em Engenharia Elétrica (1993) pela PUC-Minas e pós-graduado em gestão de empresas e negócios (2015) pelo B.I. Internacional. Atualmente é Membro do Cobei (Comitê Brasileiro de Eletricidade, Eletrônica, Iluminação e Telecomunicações), representante do Brasil no TC37A da IEC, coordenador da CE-003.037.005 - Comissão de estudos de dispositivos de proteção contra surtos de baixa tensão e diretor de pesquisa, desenvolvimento e manufatura de dispositivos de proteção contra surtos na CLAMPER S/A. Suas áreas de interesse são: descargas atmosféricas, normas e procedimentos relacionados a DPS.

References

Cooray, Vernon. An introduction to lightning. Springer, 2015.

Grupo de Eletricidade atmosférica (ELAT) – INPE, Vítimas de raios – Infográfico. Disponível em: < encurtador.com.br/uwFKS > Acesso 16 de abril de 2019.

Kidermann, G. Descargas atmosféricas: uma abordagem de engenharia. São Paulo: ABDR Editora, 1997.132.p.

C. J. A. Cristancho, H. Suárez, Y. Urbano and F. Román, "Fatal livestock lightning accident in Colombia,"2017 International Symposium on Lightning Protection (XIV SIPDA), Natal, 2017, pp. 295-298.

F. H. Silveira and S. Visacro, "Lightning Parameters of a Tropical Region for Engineering Application: Statistics of 51 Flashes Measured at Morro do Cachimbo and Expressions for Peak Current Distributions," in IEEE Transactions on Electromagnetic Compatibility, vol. 62, no. 4, pp. 1186-1191, Aug. 2020.

Y. Zhang, S. Chen, X. Yan, W. Lv and C. Chen, "Observation and analysis of residual voltage of SPD connecting to overhead line," 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Taipei, 2015, pp. 360-363.

Silva Neto, A. ; Piantini, A. “Sobretensões Induzidas por Descargas Atmosféricas em Redes Secundárias.” In: VII Conferência Brasileira sobre Qualidade da Energia Elétrica (VII SBQEE), 2007, Santos. VII Conferência Brasileira sobre Qualidade da Energia Elétrica (VII SBQEE), 2007. v. único. p. 1-6.

Yokoyama, S.; Miyake, K.; Mitani, H. “Advanced observations of lightning induced voltage on power distribution lines.” IEEE Transaction on Power Delivery, Vol. 1, n.2, p.129-139, Apr. 1986.

F. J. Mo, J. J. Ruan and Y. P. Chen, "Surge Suppression and Electromagnetic Compatibility", Power System Technology, Vol.28, No.5, pp:69-72, Mar.2004.

Y.Yang, R. Cheng, J. Shen, et al. “Method for online outdoor electrical equipment lightning warning based on grey relation analysis.” Electric Power, 45: 20-23, 2012.

V. Milardić, I. Uglesic and I. Pavić, "Selection of Surge Protective Devices for Low-Voltage Systems Connected to Overhead Line," in IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1530-1537, July 2010.

ABNT, Associação Brasileira de Normas Técnicas. NBR-5419 “Proteção de Estruturas Contra Descargas Atmosféricas”, Maio 2015.

Norma IEC 61643-11:2011, “Low-voltage surge protective devices – Part 11: Surge protective devices connected to low-voltage power systems - Requirements and test methods”, 2011.

F. Nakazato, H. Shimizu and N. Watanabe, "A study on lightning protection system for low voltage customer system using EMTP," 2011 7th Asia-Pacific International Conference on Lightning, Chengdu, 2011, pp. 629-632.

Y. Du, B. Li and M. Chen, "Lightning-induced surges in building electrical systems," 2014 International Conference on Lightning Protection (ICLP), Shanghai, 2014, pp. 1217-1222.

ABNT, NBR 5410, “Instalações Elétricas de Baixa Tensão”, versão corrigida, Março 2008.

IEEE Std. C62.41 (IEEE 587) – “Recommended Practice on Characterization of Surge in Low-Voltage (1000V and less) AC Power Circuit”, PES SPDC, New York, 2002.

Norma IEC 61000-4-5:2015, “Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test”, Edition 3.0, 2014.

G. Li, C. Lei, G. Ling and G. Yang, "Analytical Method for Performance Degradation of Voltage Limiting Type SPD Based on Leakage Current Measurement," 2019 11th Asia-Pacific International Conference on Lightning (APL), Hong Kong, 2019, pp. 1-5.

D. T. Khanmiri, R. Ball, J. Mosesian and B. Lehman, "Degradation of low voltage metal oxide varistors in power supplies," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016, pp. 2122-2126.

ABNT, NBR 5419-2, “Proteção contra descargas atmosféricas - Parte 2: Gerenciamento de risco”, Junho 2015.

Folha de S.Paulo, Tocantins é Estado campeão em raios; em SP, São Caetano lidera ranking. Disponível em: < encurtador.com.br/cfrO0> Acesso em 02 de maio de 2019.

Published

2021-03-29

How to Cite

Cavalcanti, G. O., Feitosa, M. A. F., Pereira, K. F. H., Marinho, M. H. da N., Neto, A. S., Sobral, L. de C., Goncalves, P. M. R., Lara, D. T. M., Gomes, T. F., Teixeira, R. J., & Barbosa, W. A. (2021). Efficiency of Class III Surge Protection Devices against Lightning Surges. IEEE Latin America Transactions, 19(9), 1459–1467. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/4745