Planning a HVDC South American Pacific Electric Interconnection Based on MTDC
Keywords:
HVDC, MTDC, Graph Theory, Minimum Spanning Tree, Centrality IndexAbstract
The continuous development of DC technology and its increasing implementation in projects, mainly in Europe, North America, and Asia, have created the need for methodologies to plan the DC interconnections between countries. However, the planning process should not be developed in a local context but rather, in the long run, thus enabling the inclusion of regional electrical systems. This paper presents two main methodologies. The first one aims to design local Multi-Terminal DC grids (MTDC) at the national level, using the graph theory. The second methodology presented is the integration of local MTDC grids that can later be extended to regional, continental, or subcontinental grids. The methodology is applied in the planning of regional electrical integration of the Pacific basin countries.
Downloads
References
A. Alassi, S. Bañales, O. Ellabban, G. Adam, C. MacIver, “HVDC Transmission: Technology Review, Market Trends and Future Outlook,” Renewable and Sustainable Energy Reviews, vol. 112, pp. 530-554, 2019.
J. Sun, et al., “Renewable Energy Transmission by HVDC Across the Continent: System Challenges and Opportunities,” CSEE Journal of Power and Energy Systems, vol. 3 no. 4, pp. 353-364, Dec. 2017.
T. Ahmed, et al., “ASEAN power grid: A secure transmission infrastructure for clean and sustainable energy for South-East Asia,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 1420-1435, 2017.
World Energy Council “World Energy Scenarios 2017, Latin America & The Caribean Energy Scenarios,” WEC, London, UK, 2017.
G. Li, C. Li, and D. Van Hertem, “HVDC Technology overview,” in HVDC Grids For Offshore and Supergrid of the Future, 1st ed., Hoboken, NJ, USA, Wiley-IEEE Press, 2016, pp. 45-72.
G. Li, H. Ye, S. Gao, Y. Liu, L. Gao, “Modeling and simulation of large power system with inclusion of bipolar MTDC grid,” Int. Journal of Electric Power and Energy Systems (IJEPES), vol. 116, 2020.
S. Peng, et al., “Probabilistic Power Flow for Hybrid AC/DC Grids with Ninth-Order Polynomial Normal Transformation and Inherited Latin Hypercube Sampling,” Energies, vol. 12, no. 3088, 2019.
G. Arcia-Gaibaldi, P. Cruz-Romero, A. Gómez-Expósito, “Future power transmission: Visions, technologies and challenges,” Renewable and Sustainable Energy Reviews, vol. 94, pp. 285-301, 2018.
H. Xie, Z. Bie, G. Li, “Reliability-Oriented Networking Planning for Meshed VSC-HVDC Grids,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 1342-1351, marzo 2019.
J. Dave, H. Ergun, T. An, J. Lu, D. van Hertem, “TNEP of meshed HVDC grids: ‘AC’, ‘DC’ and convex formulations,” IET Generation, Transmission and Distribution, vol. 13, no. 24, pp. 5523-5532, 2019.
K. Meng, W. Zhang, J. QIu, Y. Zheng, Z.Y. Dong, “Offshore Transmission Network Planning for Wind Integration Considering AC and DC Transmission Options,” IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4258-4268, Nov. 2019.
A.H. Dominguez, L.H. MAcedo, A.H. Escobar, R. Romero, “Multistage Security-Constrained HVAC/HVDC Transmission Expansion Planning with a Reduced Search Space,” IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4805-4817, Nov. 2017.
W. Zhifang, A. Scaglione, and R. J. Thomas, “Electrical Centrality Measures for Electric Power Grid Vulnerability,” in Proc. 49th IEEE Conference on Decision and Control, Atlanta, GA, USA, 2010.
Join Working Group B2/B4/C1.17 “Impacts of HVDC Lines on the Economics of HVDC Projects,” CIGRE, Paris, France, 2009.
A. L’Abbate “Review of cost of transmission of infrastructures, including crossborder connections,” In Realise Grid, Paris, France, 2011.
Join Working Group B2/B4/C1.17 “Recommended Voltages for HVDC Grids,” CIGRE, Paris, France, 2014.
M.A. Rios, and F.A. Acero, “Planning MTDC Grids based Graph Theory,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, pp. 37-46, Feb. 2021.
UPME, “Plan de Expansión de Referencia de Generación - Transmisión 2017 – 2031,” UPME, Bogotá, Colombia, 2018.
CORPOELEC, “Documento Base Plan Maestro Socialista Para el Rescate y Desarrollo del Sistema Eléctrico 2010-2030,” CORPOELEC, Caracas, Venezuela, 2010.
CONELEC, “Plan Maestro de Electrificación 2013-2022, Estudio y Gestión de la Demanda Eléctrica,” CONELEC, Quito, Ecuador, 2013.
COES Dirección de Planificación de la Demanda, “Proyección De la Demanda del SEIN y Futuros Extremos,” COES, Lima, Perú, 2019.
Gerencia de Planificación de la Demanda CEN, “Proyección de Demanda Eléctrica 2018-2038,” Coordinador Eléctrico Nacional, Santiago, Chile, 2019.
BID, “Integración Eléctrica Regional, Oportunidades y retos que Enfrentan los Países de América Latina,” BID, Washington, USA, 2019.
ECA, “The Potential of Regional Power Sector Integration”, Economic Consulting Associates, London, UK, 2010.
ISA-ETESA, “Interconexión Eléctrica Colombia Panamá”, ISA-Interconexión Eléctrica Colombia Panamá S.A -ICP-, 2012.
ETESA, “Plan de Expansión del Sistema Interconectado Nacional 2018-2032,” ETESA, Panamá, ETE-DTR-GPL-150-2019 2019
T. K. Vrana, and P. Härtel, “Estimation of investment model cost parameters for VSC HVDC transmission infrastructure,” Electr. Power Syst. Res, vol. 160, pp. 99-108, July 2018.
D. Paez, and M.A. Rios “Cost Analysis of an MTDC for interconnection Guajira-Cerromatoso-Panama,” in Proc. 2019 FISE-IEEE/CIGRE Conference (FISE/CIGRE), Medellin, Colombia, 2019.