Modelling and Experimental Validation of Aging Factors of Photovoltaic Solar Cells



aging, degradation, energy, fault detection, modelling, photovoltaic energy, solar


Photovoltaic solar energy has evolved to be a viable and popular alternative for the generation of electricity. To analyze the profitability of these renewable energy systems, computer modelling of the solar devices has become a necessary and widespread practice in the academic and industrial world. The modelling not only allows the estimation of the electric productivity but also the estimation of the amortization of a solar installation. However, aging and deterioration of photovoltaic modules have been little studied yet and when these aging effects can be an important source of power degradation on solar cells and fault generation, and thus a cause of mismatching on amortization deadlines. In this work, based on a proposed long-term behavioral generator model, the most common aging mechanisms of solar panels have been modelled and simulated. The results have been validated against a real solar medium-high power generator designed for grid connection in Spain. Results allow to measure the efficiency of these photovoltaics energy systems, get better accuracy of their amortization and estimate the power degradation range of photovoltaic modules.


Download data is not yet available.

Author Biographies

Andrés Guisández Hernández, Universidad Complutense de Madrid

Andrés Guisández Hernández Graduado en Ciencias Físicas (2016) y Máster en Energía (2017) por la Universidad Complutense de Madrid. Posee experiencia en el desarrollo de software, tratamiento de datos y simulación física dentro del ámbito de la energía. Interesado en los campos de simulación física, modelos matemáticos, energía solar fotovoltaica, transición energética y sostenibilidad energética.

Santos Penas Santos, Universidad Complutense de Madrid

Matilde Santos Peñas Licenciada y doctora en Ciencias Físicas por la Universidad Complutense de Madrid. Es Catedrática de Ingeniería de Sistemas y Automática en la Facultad de Informática. Ha publicado números artículos en revistas científicas indexadas, así como capítulos de libros. Ha dirigido más de 10 tesis doctorales. Participa y dirige proyectos de investigación nacionales, internacionales y europeos.
Sus principales líneas de investigación son la aplicación de la Inteligencia Artificial al control, modelado y simulación, aplicaciones de las técnicas de Soft Computing y las energías renovables, eólica y solar.


M. Tomás-Rodríguez and M. Santos, “Modelling and control of floating offshore wind turbines”, Rev. Iberoam. Autom. Inf. Ind. vol. 16, no. 4, pp. 381-390, Sep. 2019. doi: 10.4995/riai.2019.11648.

A. A. Estévez de Bén, A. Alvarez-Diazcomas, and J. Rodríguez-Reséndiz, “Transformerless multilevel voltage-source inverter topology comparative study for PV systems”, Energies, vol. 13, no. 12, pp. 3261, 2020.

F. R. Martins, J. F. L. Lima, R. S. Costa, A. R. Gonçalves, M. P. Pes, and E. B. Pereira, E. B. “Comparing solar data from NWP models for Brazilian territory”, IEEE Lat. Am. Trans. vol. 18, no. 5, pp. 899-906, 2020.

K. Lobo and M. Santos, “Modeling and simulation of hydroelectric projects with reservoirs, IEEE Lat. Am. Trans. vol. 17, no. 10, pp.1588-1597, Oct. 2019.

E. D. Obando, S. X. Carvajal, and J. P. Agudelo, J. P. “Solar radiation prediction using machine learning techniques: A Review”, IEEE Lat. Am. Trans. vol. 17, no. 4, pp. 684-697, 2019.

L. Alcantara and M. Campos, “Analysis of seasonal aspects of nebulosity on the project of fixed photovoltaic installations at the city of Belém, Brazil. IEEE Lat. Am. Trans. vol. 17, no. 4, pp. 625-632, 2019.

M. Mikati, M. Santos, and C. Armenta, “Modelado y simulación de un sistema conjunto de energía solar y eólica para analizar su dependencia de la red eléctrica”, Rev. Iberoam. Autom. Inf. Ind. vol. 9, no. 3, pp. 267-281, Jul. 2012.

J. R. Núñez, I. F. Benítez, R. Proenza, L. Vázquez, and D. Díaz. “Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red”. Rev. Iberoam. Autom. Inf. Ind. vol. 17, no. 1, pp. 94-105, 2020.

L. Castañer and S. Silvestre, Modelling photovoltaic systems using PSpice. John Wiley & Sons, Inc. Chichester, England, 2002.

J. L. de Souza Silva, H. S. Moreira, D. B. de Mesquita, M. V. G. dos Reis, M. V. G., and M. G. Villalva, M. G. “Study of power optimizers for grid-connected photovoltaic systems”. IEEE Lat. Am. Trans. vol. 17, no. 1, pp. 127-134, 2019.

M. Mikati and M. Santos, “Knowledge-Based decision system for sizing grid-connected photovoltaic arrays. In Knowl. Eng. and Manage. Springer, Berlin, Heidelberg. Jul. 2014. pp. 463-472.

M. Boussaid, A. Belghachi, K. Agroui, and N. Djarfour, “Mathematical models of photovoltaic modules degradation in desert environment”, AIMS Energy, vol. 7, no. 2, pp.127-140. Mar. 2019.

M. Köntges, S. Kurtz, C. Packard, U. Jahn, K. A. Berger, K. Kato, T. Friesen, and M. Van Iseghem, “Review of failures of photovoltaic modules”, Tech. Rep. IEA‐PVPS T13‐01, 2014.

E. L. Meyer, and E. E. Van Dyk, “Assessing the reliability and degradation of photovoltaic module performance parameters”, IEEE Trans. Reliab. vol. 53, no. 1, pp. 83-92, Apr. 2004.

A. Phinikarides, N. Kindyni, G. Makrides, and G. E. Georghiou, “Review of photovoltaic degradation rate methodologies”, Renewable Sustainable Energy Rev. vol. 40, pp. 143-152, Dec. 2014.

M. A. Quintana, D. L. King, T. J. McMahon, and C. R. Osterwald, “Commonly observed degradation in field-aged photovoltaic modules” In 29th IEEE Photovoltaic Specialists Conf, New Orleans, LA, USA, 2002, pp. 1436-143.

D. C. Jordan, T. J. Silverman, J. H. Wohlgemuth, S. R. Kurtz, and K. T. VanSant, “Photovoltaic failure and degradation modes”, Prog. Photovoltaics Res. Appl. vol. 25, no. 4, pp. 318-326, Jan. 2017.

B. Nehme, N. K. M'Sirdi, T. Akiki, and B. Zeghondy, “Assessing the effect of temperature on degradation modes of PV panels”, In Int. Conf Renewable Energ. for Developing Countries, Mar 2020, Marrakech, Morocco. ffhal-02486434f.

J. D. Bastidas-Rodríguez, E. Franco, G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, “Model-based degradation analysis of photovoltaic modules through series resistance estimation”, IEEE Trans. Ind. Electron. vol. 62, no. 11, pp. 7266-7265, Jul. 2015.

R. Doumane, M. Balistrou, P. O. Logerais, O. Riou, J. F. Durastanti, and A. Charki, “A circuit-based approach to simulate the characteristics of a silicon photovoltaic module with aging”, J. Sol. Energy Eng. vol. 137, no. 2, pp. 021020, Apr. 2015.

M. S. Jadin, M. A. Ibrahim, and N. Sulaiman, “Development of PV module power degradation analyzer”, in Proc. ECCE 2019. Springer, Singapore. Mar. 2020, pp. 681-690.

P. Manganiello, M. Balato, and M. Vitelli, “A survey on mismatching and aging of PV modules: The closed loop. IEEE Trans. Ind. Electron. vol. 62, no. 11, pp. 7276-7286, Apr. 2015.

A. Ndiaye, A. Charki, A. Kobi, C. M. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review”, Sol. Energy, vol. 96, pp. 140-151, Oct. 2013.

K. Ishaque and Z. Salam, “A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model”, Sol. Energy, vol. 85, no. 9, pp. 2217-2227, Sep. 2011.

M. Mikati, M. Santos, and C. Armenta, “Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system”, Renewable Energy, vol. 57, pp.587-593, Sep. 2013.

Agencia Estatal de Meteorología. AEMET. Datos climatológicos: Valores normales. Madrid, España, 2017 [Online]. Available:

V. S. B. Kurukuru, F. Blaabjerg, M. A. Khan, and A. Haque. “A novel fault classification approach for photovoltaic systems”. Energies, vol. 13 no. 2, 308, 2020.

F. Kersten, P. Engelhart, H. C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, ... and J. W. Müller, “Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature” Sol. Energy Mater. Sol. Cells, vol. 142, pp. 83-86, Nov. 2015.

B. Sopori, P. Basnyat, S. Devayajanam, S. Shet, V. Mehta, J. Binns, and J. Appel, “Understanding light-induced degradation of c-Si solar cells”, In 38th IEEE Photovoltaic Specialists Conf (PVSC), Austin, TE, USA, 2012, pp. 001115-001120.

B. Braisaz, C. Duchayne, M. Van Iseghem, and K. Radoune, “PV aging model applied to several meteorological conditions”, in Proc. UE PVSEC, Amsterdam, The Netherlands, 2014, pp. 2303–2309.

L. Cristaldi, M. Faifer, M. Rossi, S. Toscani, M. Catelani, L. Ciani, and M. Lazzaroni, “Simplified method for evaluating the effects of dust and aging on photovoltaic panels”, Meas. vol. 54, pp. 207-214, Aug. 2014.

H. Qasem, T. R. Betts, H. Müllejans, H. AlBusairi, and R. Gottschalg, “Dust‐induced shading on photovoltaic modules”, Prog. Photovoltaics Res. Appl. vol. 22, no. 2, pp. 218-226, Jun. 2014.



How to Cite

Guisández Hernández, A., & Santos, S. P. (2021). Modelling and Experimental Validation of Aging Factors of Photovoltaic Solar Cells. IEEE Latin America Transactions, 19(8), 1270–1277. Retrieved from