Multiclass Classification of Cardiac Rhythms on Short Single Lead ECG Recordings using Bidirectional Long Short-Term Memory Networks

Authors

Keywords:

cardiac rythm, Atrial Fibrillation, Electrocardiography, Deep Learning

Abstract

The recognition of cardiac rhythms is a topic of great relevance, particularly using short single-lead ECG recordings, due to its potential to early detect cardiovascular diseases and take actions quickly to preserve people’s wellbeing. Among cardiac arrhythmias, atrial fibrillation is the most common sustained cardiac arrhythmia, with significant mortality and morbidity rates. Several approaches have been conceived to identify cardiac rhythms, from the comparison of heart rate with adaptive and fixed thresholds to the application of deep and machine learning techniques. In this work, the classification of three cardiac rhythms (normal, atrial fibrillation, and other arrhythmias), as well as the identification of noise recordings, were performed using bidirectional LSTM networks that exploit the ECG signal (a representation of the cardiac electric activity) and time series containing information about the auricular and ventricular activities. A Monte Carlo 10-fold cross-validation of 10 iterations was performed to assure the generalization of the classifiers and the replicability of the results. An average accuracy of 77.97% was obtained to recognize the four classes but increase up to 85.95% when noise recordings were left out of the classification process. Moreover, micro F1 scores of 89.96%, 79.23%, and 79.77% were obtained for normal rhythm, atrial fibrillation, and other arrhythmias, respectively. The imbalance of classes and the characteristic patterns of normal rhythm and atrial fibrillation were the main factors associated with these performances.

Downloads

Download data is not yet available.

Author Biographies

Miguel Altuve, Universidad Pontificia Bolivariana

Miguel Altuve (IEEE S’01-M’12-SM’17) Doctor en Procesamiento de Se˜nales y Telecomunicaciones (2011), Universidad de Rennes 1, Rennes, Francia, Mag´ıster en Ingenier´ıa Electr´onica (2006), Universidad Sim´on Bol´ıvar, Caracas, Venezuela, Ingeniero Electr´onico (2002), Universidad Nacional Experimental Polit´ecnica de las Fuerzas Armadas, Maracay, Venezuela. Consultor Externo (2020), Universidad Internacional de Valencia, Espa˜na, Profesor Asociado (2015-2019), Facultad de Ingenier´ıa El´ectrica y Electr´onica, Universidad Pontificia Bolivariana seccional Bucaramanga, Colombia, Profesor Asistente (2005-2014), Departamento de Tecnolog´ıa Industrial, Universidad Sim´on Bol´ıvar, Caracas, Venezuela. Sus intereses de investigaci´on incluyen el procesamiento digital de se˜nales y el aprendizaje autom´atico en bioingenier´ıa.

Fabio Hernández, Universidad Pontificia Bolivariana

Fabio Hern´andez Ingeniero Electr´onico (2016) y Mag´ıster en Ingenier´ıa Electr´onica (2020), Universidad Pontificia Bolivariana seccional Bucaramanga, Colombia. Ingeniero de Investigaci´on y Desarrollo, Stericlinic SAS, Bucaramanga, Colombia, (2016, 2018), Profesor C´atedra, Universidad Pontificia Bolivariana, Bucaramanga, Colombia, (2017-2018), Ingeniero de Investigaci´on y Desarrollo (remoto), Golden Security Services, Hallandale Beach, EEUU (2018-actual). Sus intereses de investigaci´on incluyen procesamiento digital de se˜nales, aprendizaje autom´atico, Internet de las cosas y desarrollo de productos basados en sistemas embebidos para uso industrial.

Published

2021-03-16

How to Cite

Altuve, M., & Hernández, F. (2021). Multiclass Classification of Cardiac Rhythms on Short Single Lead ECG Recordings using Bidirectional Long Short-Term Memory Networks. IEEE Latin America Transactions, 19(7), 1207–1216. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/4271