Wireless Network Technologies for Smart Homes: A Technical and Economic Analysis



Economical and Technical Analyze, IoT, Smart Grid, Smart Home, Wireless Technologies


The Smart Grid concept is being implemented and it is a close reality, its application has been accelerated by the reduction of the electronic component’s costs, the Internet of Things evolution and the necessity to develop more efficient solutions for electric vehicles and distributed generation. The main projects around the world are starting with the implementation of Smart Homes, due to the greater easy technical solution and high compensation. These implementations are accompanied by technical and economic barriers, due to the increase in data generation and the increase products price. This paper focuses on the study of the Sub-GHz, WiFi, and ZigBee wireless networks, making a technical and economic analysis of these networks. Experimental and simulation analysis were used to evaluate these technologies, allowing to simulate a complete Smart Home environment for energy and demand management, applying a communication node for each energy point. The economic analysis relates the direct cost of technology module and their energy consumption, based on rates from the local distributor of the residence. In conclusion, the document establishes the best wireless technology to apply in energy and demand management in smart homes environments, with higher transmission success rates and better cost benefit.


Download data is not yet available.

Author Biographies

Marcelo Marcos Amoroso, Universidade Federal de Santa Catarina

Marcelo M. Amoroso graduado em Engenharia Elétrica pela Faculdade SATC, em 2014, e pós-graduado em Engenharia de Produção. Recebeu recentemente o título de Mestre em Energia e Sustentabilidade pela UFSC (2020). Suas áreas de pesquisa são IoT, Eletrônica Industrial e Sistemas Embarcados.

Ricardo Moraes, Universidade Federal de Santa Catarina

Ricardo Moraes recebeu o título de doutor em Engenharia Eletrotécnica e de Computadores pela Universidade do Porto, Portugal, em 2007. É professor associado e pesquisador no Departamento de Computação da UFSC. Seus interesses de pesquisa incluem sistemas distribuídos, sistemas de comunicação em tempo real, redes sem fio e redes elétricas inteligentes.

Gustavo Medeiros de Araujo, Universidade Federal de Santa Catarina

Gustavo M. de Araújo graduado em Informática pela Universidade Católica de Brasília, Brasil, é mestre em Ciência da Computação pela UFSC, Brasil. Doutor em Engenharia de Automação e Sistemas pela UFSC, e fez o curso de Doutorado sanduíche na Universidade de Magdeburg, Alemanha. Professor adjunto na UFSC no Departamento de Ciência da Informação e trabalha com Ciência de Dados.

Vagner Silva Rodrigues, Universidade Federal de Santa Catarina

Vagner S. Rodrigues graduado em 2014 em Engenharia Elétrica pela Universidade do Estado de Santa Catarina (UDESC). Recebeu recentemente o título de Mestre em Energia e Sustentabilidade pela UFSC (2020). É Professor na Escola Educacional Técnica SATC (desde 2014). Seus interesses de pesquisa incluem internet das coisas e sistemas embarcados.


M. O. PINTO, “Energia ele´trica: gerac¸a˜o, transmissa˜o e sistemas interli- gados,” Rio de Janeiro: LTC, 2014.

A. A. Cecilia and K. Sudarsanan, “A survey on smart grid,” in 2016 In- ternational Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), 2016, pp. 1–7.

A. Saad al sumaiti, M. H. Ahmed, and M. M. Salama, “Smart home activities: A literature review,” Electric Power Components and Systems, vol. 42, no. 3-4, pp. 294–305, 2014.

T. Dragicˇevic´, P. Siano, S. Prabaharan et al., “Future generation 5G wireless networks for smart grid: a comprehensive review,” Energies, vol. 12, no. 11, p. 2140, 2019.

S. Singh, A. Roy, and M. Selvan, “Smart load node for nonsmart load under smart grid paradigm: A new home energy management system,” IEEE Consumer Electronics Magazine, vol. 8, no. 2, pp. 22–27, 2019.

K. G. Di Santo, E. Kanashiro, S. G. Di Santo, and M. A. Saidel, “A review on smart grids and experiences in brazil,” Renewable and Sustainable Energy Reviews, vol. 52, pp. 1072–1082, 2015.

T. Mendes, R. Godina, E. Rodrigues, J. Matias, and J. Catala˜o, “Smart and energy-efficient home implementation: Wireless communication technologies role,” in 5th IEEE International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 2015, pp. 377–382.

T. Schneider. (2015, mar) IoT: Is tech the easy part?,. [Online]. Available: https://gcn.com/articles/2015/05/19/iot-policy-lags- technology.aspx

A. Mahmood, N. Javaid, and S. Razzaq, “A review of wireless com- munications for smart grid,” Renewable and sustainable energy reviews, vol. 41, pp. 248–260, 2015.

A. Kailas, V. Cecchi, and A. Mukherjee, “A survey of communications and networking technologies for energy management in buildings and home automation,” Journal of Computer Networks and Communications, vol. 2012, 2012.

Y. Kabalci, “A survey on smart metering and smart grid communication,”

Renewable and Sustainable Energy Reviews, vol. 57, pp. 302–318, 2016.

Y.-C. Li and S. H. Hong, “BACnet–EnOcean smart grid gateway and its application to demand response in buildings,” Energy and buildings, vol. 78, pp. 183–191, 2014.

M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Review of commu- nication technologies for smart homes/building applications,” in IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), 2015, pp. 1–6.

M. Emmanuel and R. Rayudu, “Communication technologies for smart grid applications: A survey,” Journal of Network and Computer Appli- cations, vol. 74, pp. 133–148, 2016.

L. Davoli, L. Belli, A. Cilfone, and G. Ferrari, “From micro to macro IoT: Challenges and solutions in the integration of IEEE 802.15.4/802.11 and sub-GHz technologies,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 784–793, 2017.

“IEEE standard for information technology–telecommunications and information exchange between systems - local and metropolitan area networks–specific requirements - part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications amendment 2: Sub 1 ghz license exempt operation,” IEEE Std 802.11ah-2016 (Amend- ment to IEEE Std 802.11-2016, as amended by IEEE Std 802.11ai-2016), pp. 1–594, 2017.

T. Nguyen, B. Lakshmanan, C. Lin, W. Sheng, Y. Gu, M. Liu, and

S. Zhang, “A miniature smart home testbed for research and education,” in 7th IEEE Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, 2017, pp. 1637–1642.

M. Burunkaya and T. Pars, “A smart meter design and implementation using ZigBee based wireless sensor network in smart grid,” in 4th Inter- national Conference on Electrical and Electronic Engineering (ICEEE), 2017, pp. 158–162.

A. Ghosh and N. Chakraborty, “Design of smart grid in an university campus using ZigBee mesh networks,” in IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPE- ICES), 2016, pp. 1–6.

S.-L. Chen, S.-K. Chang, and Y.-Y. Chen, “Development of a multisensor embedded intelligent home environment monitoring system based on digital signal processor and Wi-Fi,” International Journal of Distributed Sensor Networks, vol. 11, no. 6, p. 171365, 2015.

I. M. Ozcelik, I. Korpeoglu, and A. Agrawala, “Energy efficient IP- connectivity with IEEE 802.11 for home M2M networks,” 2017.

S. Yıldız and M. Burunkaya, “Web based smart meter for general purpose smart home systems with ESP8266,” in 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2019, pp. 1–6.

A. R. D. DGND, “Single-phase multifunction metering IC with di/dt sensor interface ADE7753.”

I. F. Akyildiz and I. H. Kasimoglu, “A protocol suite for wireless sensor and actor networks,” in Proceedings. 2004 IEEE Radio and Wireless Conference (IEEE Cat. No. 04TH8746), 2004, pp. 11–14.

C. PETRUCCI. Mercado imobilia´rio. [Online]. Available: http://www.secovi.com.br/downloads/pesquisas-e-indices/balancos-do- mercado/2017/arquivos/anuario-do-mercado-imobiliario-2017-celso- petrucci.pdf

Associac¸a˜o Brasileira de Normas Te´cnicas, NBR 5410: Instalac¸o˜es ele´tricas de baixa tensa˜o, 2018.

Elecrow, HC-12 Wireless Serial Port Communication Module User Manual, 2012.

Shenzhen Anxinke Technology. (2015) ESP-07 WiFi module. [Online]. Available: http://www.ai-thinker.com

D. International, “XBee ® / XBee-PRO ® ZB RF modules Digi international inc,” Digi Int. Inc, apr 2012.



How to Cite

Marcos Amoroso, M., Moraes, R., Medeiros de Araujo, G., & Silva Rodrigues, V. (2021). Wireless Network Technologies for Smart Homes: A Technical and Economic Analysis. IEEE Latin America Transactions, 19(5), 717–725. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/3916