Estimating Delays in Switched Ethernet Networks on board of Aerospace Vehicles

Authors

Keywords:

Distributed systems, switched networks, ethernet network, aerospace vehicles

Abstract

Since the year 2000, several studies on bounding end-to-end delays in switched Ethernet topologies required in the design of distributed processing systems on board of aerospace vehicles were made public. These studies presented various approaches for dealing with the non-deterministic behavior of non-synchronized network traffic while striving to avoid overestimation. One of them described an effect observed in frame-based network transmissions and named it “serialization”. This effect is used in this paper with the objective of constructing a new low-complexity method for estimating the worst case delay experienced by a frame crossing a switched Ethernet. This method results from the combination of two new propositions which inherit concepts originally formulated by schedulability analysis methods for multitask processing systems. Its implementation is shown on a case study using a step-by-step procedure and the results obtained are favorably compared with one previously published work.

Downloads

Download data is not yet available.

Author Biographies

Sergio Penna, INPE

Sérgio Duarte Penna é graduado em Engenharias Mecânica pela Escola de Engenharia da Universidade Federal de Minas Gerais (EE-UFMG), Belo Horizonte, Brasil, em 1978. Obteve o grau de Mestre em Engenharia e Tecnologia Espaciais (ETE) em 2008 pelo Instituto Nacional de Pesquisas Espaciais (INPE), onde atualmente é doutorando no curso de Gerenciamento de Sistemas Espaciais (ETE/CSE).

Marcelo Souza, INPE

Engenheiro Eletrônico graduado pelo Instituto Tecnológico da Aeronáutica (ITA) em São José dos Campos, Brasil. Ele é Mestre em Ciências Espaciais e Mecânica Orbital pelo Instituto Nacional de Pesquisas Espaciais (INPE) em 1980 e Ph.D.em Aeronáutica e Astronáutica pelo MIT em 1985. Ele ingressou no INPE em 1977 para trabalhar com satélites e desde 1985 leciona e orienta pesquisas como Professor e Pesquisador Senior no curso de Engenharia e Tecnologias Espacais

References

C. B. Watkins and R. Walter, “Transitioning from federated avionics architectures to Integrated Modular Avionics”, in AIAA/IEEE 26th Digital Avionics Systems Conference, Dallas, TX, USA, 2007, pp. 1–10, DOI:10.1109/DASC.2007.4391842.

IEEE Standard for Ethernet, IEEE Standard 802.3-2018, DOI: 10.1109/IEEESTD.2018.8457469.

J. Martin and K. K. Chapman, Local Area Networks – architectures and Implementations, Englewood Cliffs, New Jersey, USA: Prentice Hall, 1989.

R. Seifert and J. Edwards, “Make the Switch!”, in The All-New Switch Book: The Complete Guide to LAN Switching Technology, 2nd Edition, Indianapolis, USA: Wiley Publishing, 2008, ch. 15, pp. 587-647, ISBN 13: 978-0470287156.

N. Safwat, M. Eldakroury, A. Abdelhalim, “The Evolution of Aircraft Data Networks”, in International Journal of Computer Applications (0975 – 8887), vol. 94 – n. 11, May 2014, DOI: 10.5120/16389-5968.

F. Splendor, N. A. Martins, I. M. S. Gimenes, J. A. Martini, “Design of an Autopilot for Cessna 182”, in IEEE Latin America Transactions, vol. 13, No. 1, Jan.. 2015.

R. L. Cruz, “A Calculus for Network Delay. Part I. Network Elements in Isolation”, in IEEE Transaction on Information Theory, pp. 114-131, 1991.

R. L. Cruz, “A Calculus for Network Delay. Part II. Network Analysis”, in IEEE Transaction on Information Theory, pp. 132–141, 1991.

J. Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deterministic Queuing Systems for the Internet, Berlin, Germany: Springer-Verlag, 2001, ISBN 3-540-42184-X.

Federal Aviation Administration (FAA), “Airworthiness Certificates Overview”, [Online] Disponível em: https://www.faa.gov/aircraft/air_cert/airworthiness_certification/aw_overview/, Acessado em: Sep. 10, 2020

F. Frances, C. Fraboul and J. Grieu, "Using network calculus to optimize the AFDX network", Proceedings of ERTS Toulouse France, 2006.

H. Bauer, “Analyze pire cas de flux hétérogenes dans un réseaux embarqué avion”, Ph.D. dissertation, Université de Toulouse, France, 2011.

G. Kemayo, F. Ridouard, H. Bauer, and P. Richard, “A Forward end-to-end delays analysis for packet switched networks”, in 22nd International Conference on Real-Time Networks and Systems - RTNS ’14, New York, NY, USA: ACM Press, 2014, pp. 65–74, DOI: 10.1145/2659787.2659801.

N. Benammar, F. Ridouard, H. Bauer, P; Richard, “Forward end-to-end delay analysis extension for FP/FIFO policy in AFDX networks”, in 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8, Sep. 2017, DOI: 10.1109/ETFA.2017.8247606.

Cisco Systems, Inc., “Comparing Traffic Policing and Traffic Shaping for Bandwidth Limiting”, [Online] Disponível em: https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html, Acessado em: Sep. 10, 2020.

C. L. Liu, and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment”, in Journal of the Association for Computing Machinery, v. 20, n. 1, 1973.

M. Joseph and P. Pandya, “Finding response times in a real time system”, in The Computer Journal, 29(5) pp. 390–395, 1986.

B. Stevens and F. Lewis, Aircraft Control and Simulation, 2nd Edition, New Jersey, USA, John Wiley & Sons, Inc., 2003, ch. 7, pp. 598-607, ISBN 0-471-37145-9.

ARINC Specification 664, Aircraft Data Network, Part 7: Deterministic Networks, 2009.

Z. Luxi, L. Qiao, X. Ying, Z. Zhong and X. Huagang, “Using Multi-Link Grouping Technique to Achieve Tight Latency in Network Calculus”, in AIAA/ IEEE 32nd Digital Avionics Systems Conference, East Syracuse, NY, USA, 2013, pp. 2E3:1-10, DOI:10.1109/DASC.2013.6712551

Published

2021-03-29

How to Cite

Penna, S., & Souza, M. (2021). Estimating Delays in Switched Ethernet Networks on board of Aerospace Vehicles. IEEE Latin America Transactions, 18(11), 1917–1924. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/3889