Extensión de la redundancia basada en el conocimiento previo a reglas de asociación con conocimiento impreciso

Authors

  • Guillermo Manuel Negrín Ortiz Universidad de las Ciencias Informáticas
  • Julio César Díaz Vera Universidad de las Ciencias Informáticas
  • Carlos Molina Universidad de Jaen
  • María Amparo Vila Universidad de Granada

Keywords:

Minería de reglas de asociación imprecisas, Reglas redundantes, Post-procesamiento guiado por conocimiento, Teoría de Dempster Schaffer, Modelo del Factor de Certeza

Abstract

Association Rules Mining is one of the most studied and widely applied fields in Data Mining. However, the discovery models usually result in a very large set of rules; so the analysis capability, from the user point of view, is diminishing. Hence, it is difficult to use the found model in order to assist decision-making process. The previous handicap is heightened in presence of redundant rules in the final set. In this work we study a way to eliminate redundancy in association rules with uncertainty, with imprecise user prior knowledge. A post-processing method is developed to eliminate this kind of redundancy, using association rules known by the user. Our proposal allows to find more compact models of association rules to ease its use in the decision-making process. The developed experiments have shown that the reduction using certainty factor has a slightly better behavior. The most important contribution or this paper is the definition of a mechanism to remove knowledge based redundancy using Dempster-Schaffer Theory and the Certainty Factor Model.

Downloads

Download data is not yet available.

Published

2019-11-02

How to Cite

Negrín Ortiz, G. M., Díaz Vera, J. C., Molina, C., & Vila, M. A. (2019). Extensión de la redundancia basada en el conocimiento previo a reglas de asociación con conocimiento impreciso. IEEE Latin America Transactions, 17(4), 648–653. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/163